431-ICD-000049 Revision – C Effective Date: May 27, 2009 Expiration Date: May 27, 2014

Lunar Reconnaissance Orbiter Project

External Systems Interface Control Document for the Lunar Reconnaissance Orbiter Ground System

LRO GSFC CMO

May 27, 2009

RELEASED

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland

CM FOREWORD

This document is a Lunar Reconnaissance Orbiter (LRO) Project Configuration Management (CM)-controlled document. Changes to this document require prior approval of the applicable Configuration Control Board (CCB) Chairperson or designee. Proposed changes shall be submitted to the LRO CM Office (CMO), along with supportive material justifying the proposed change. Changes to this document will be made by complete revision.

Questions or comments concerning this document should be addressed to:

LRO Configuration Management Office Mail Stop 451 Goddard Space Flight Center Greenbelt, Maryland 20771

Signature Page

Prepared by:	Reviewed by:
Electronically Signed on NGIN	Electronically Signed on NGIN
Ralph Casasanta Date	Jim Clapsadle. Date
LRO Ground System Engineer	LRO Ground System Engineer
Code 444	GSFC, Code 444
Reviewed by:	
Electronically Signed on NGIN	Electronically Signed on NGIN
Jack Murphy. Date	Ron Zellar Date
LRO Mission Operations Lead	LR System Engineer
GSFC, Code 444	GSFC/NASA, Code 556
Electronically Signed on NGIN	Electronically Signed on NGIN
Rivers Lamb. Date	Sue Hoge. Date
LRO Flight Dynamics Lead	Flight Dynamics Facility Operations Director
GSFC, Code 595	GSFC, Code 595
Electronically Signed on NCIN	Electronically Signed on NCIN
Electronically Signed on NGIN Stefan Waldherr. Date	Electronically Signed on NGIN Leslie Ambrose Date
JPL, Telecommunications and Mission	Network Integration Manager
Services Manager, Office 911	GSFC/NASA, Code 450.1
<u> </u>	
Approved by:	
Electronically Signed on NGIN	
Richard S Saylor, Jr. Date	
LRO Ground System and Operations Lead	
GSFC, Code 444	

LUNAR RECONNAISSANCE ORBITER PROJECT

	DOCUMENT CHANGE F	RECORD	Sheet: 1 of 1
REV LEVEL	DESCRIPTION OF CHANGE	APPROVED BY	DATE APPROVED
Rev -	Initial Release, Released per 431-CCR-000210	R. Saylor	19 Jan 2007
Rev – A	Released per 451-CCR-000383	R. Saylor	08/20/2007
Rev – B	Release per 451-CCR-001058	Rick Saylor	9/16/2008
Rev – C	Release per 451-CCR-001373; see associated file Proposed RevC 431-ICD-000049 Mods for list of requested changes	Rick Saylor	5/22/2009

List of TBDs/TBRs

ltem No.	Location	Туре	Summary	Ind./Org.	Due Date
1					
2					
3					
4					

TABLE OF CONTENTS

Page

1.0	INTRODUCTION	1-1
1.1	Purpose and Scope	1-1
1.2	DOCUMENT ORGANIZATION	
1.3	REQUIREMENTS TRACEABILITY METHODOLOGY	1-1
1.4	APPLICABLE DOCUMENTS	
1.5	Referenced Documents	1-2
1.6	OTHER DOCUMENTED REFERENCES	1-2
2.0	GROUND SYSTEM OVERVIEW	2-1
2.1	GROUND SYSTEM ARCHITECTURE	2-2
2.	1.1 The LRO Space Communications Network	2-3
2.	1.2 LRO Mission Operations Center	2-4
2.	1.3 The Science Operations Centers	
2.	1.4 Flight Dynamics Facility	2-5
2.	1.5 Ground System Communications	
2.2	LRO MOC OPERATIONAL SYSTEMS	
	2.1 ITOS-Supported Real-time Telemetry and Commanding	
	2.2 Data Processing System	
	2.3 Data Management System	
	2.4 Mission Planning System	
	2.5 Attitude Ground System	
	2.6 Trending and Analysis System	
	2.7 Monitoring and Alert System	
2.3	FLIGHT DYNAMICS FACILITY	
2.4	MISSION OPERATIONS TEAM.	
2.5 2.6	FLIGHT SOFTWARE MAINTENANCE FACILITY LRO SPACE COMMUNICATIONS NETWORK	
3.0	LRO GS EXTERNAL INTERFACE PRODUCT SYNOPSIS	
4.0	LRO GROUND SYSTEM EXTERNAL INTERFACES AND PRODUCT	
4.1	FLIGHT DYNAMICS FACILITY PRODUCTS	
4.	1.1 (FDF-6) INP Station Acquisition Data	
	4.1.1.1 Product Details	
1	4.1.1.2 Format	
4.	1.2 (FDF-10) OEM Station Acquisition Data	
	4.1.2.1 Froduct Details	
4	1.3 (FDF-5) DSN Predict-Grade SPK Data	
	4.1.3.1 Product Details	
	4.1.3.2 Format	
4.	1.4 (FDF-41) DSN Long-Term Scheduling Grade SPK Data	
	4.1.4.1 Product Details	
	4.1.4.2 Format.	
4.	1.5 (FDF-7) Laser Ranging Site Prediction Data	
	4.1.5.1 Product Details4.1.5.2 Format.	
Δ	1.6 (FDF-8) Space Network Acquisition Data	
7.	4.1.6.1 Product Details	
	ii	

4.1.6.2	Format	4-35
	DF-9) Ground Station View Period Predicts File	
4.1.7.1	Product Details	
4.1.7.2	Format	
	DF-3) LRO Beta Angle Predict File	
4.1.8.1		
4.1.8.1	Product Details	
	Format.	
	DF-4) LRO Definitive Ephemeris File	
4.1.9.1	Product Details	
4.1.9.2	Format	
4.1.10	(FDF-29) LRO Definitive SPICE SPK File	
4.1.10.1	Product Details	
4.1.10.2	Format	
4.1.11	(FDF-30) LRO Predictive SPICE SPK File	
4.1.11.1	Product Details	
4.1.11.2	Format	
4.1.12	(FDF-13) Lunar Orbit Ascending and Descending Node Predicts	
4.1.12.1	Product Details	
4.1.12.2	Format	
4.1.13	(FDF-14) Lunar Orbit Terminator Crossing Predicts	
4.1.13.1	Product Details	
4.1.13.1	Format	
4.1.14	(FDF-15) Mission Eclipse Predicts	
4.1.14.1	Product Details	
4.1.14.2	Format	
4.1.15	(FDF-16) Lunar Ephemeris	
4.1.15.1	Product Details	
4.1.15.2	Format	
4.1.16	(FDF-23) Orbiter State Vector Table	
4.1.16.1	Product Details	
4.1.16.2	Format	
4.1.17	(FDF-17) Orbiter Thruster Maneuver Plans	
4.1.17.1	Product Details	
4.1.17.2	Format	
4.1.18	(FDF-19) Orbiter Post Maneuver Report	
4.1.18.1	Product Details	
4.1.18.2	Format	
4.1.19	(FDF-18) Post Separation Report	
4.1.19.1	Product Details	
4.1.19.2	Format	
4.1.20	(FDF-20) Predicted LRO Ephemeris File	
	Product Details	
4.1.20.2	Format	
4.1.21	(FDF-21) Predicted Lunar Ground Track File	
4.1.21.1	Product Details	
4.1.21.2	Format	
4.1.22	(FDF-22) Definitive Lunar Ground Track File	
4.1.22.1	Product Details	
4.1.22.2	Format	
4.1.23	(FDF-25) Thruster Calibration Data	
4.1.23.1	Product Details	
4.1.23.1	Froduct Details	
4.1.24	(FDF-36) FDF Reprocessed SPICE Definitive Ephemeris Data SPK	
4.1.24.1	Product Details	
4.1.24.2	Format	
4.1.25	(FDF-37) FDF Solar Conjunction File	

iii

4.1.25.1	Product Details	4-70
4.1.25.2	Format	
4.1.26	(FDF-38) Target Thruster Vector File	
4.1.26.1	Product Details	
4.1.26.2	Format	
4.1.27	(FDF-39) Laser Ranging Site View Period Predicts	
4.1.27.1	Product Details	
4.1.27.2	Format	
4.1.28	(FDF-40) Definitive Goddard Trajectory Determination System (GTDS) Ephemeris File	
4.1.28.1	Product Details	
4.1.28.2	Format	
4.1.29	(FDF-42) FDF Time Coefficient File	
4.1.29.1	Product Details	
4.1.29.2	Format	
4.1.30	(FDF-44) Trajectory Insertion Data	
4.1.30.1	Product Details	
4.1.30.2	Format	
4.1.31	(FDF-45) LRO Operations Activity Request	
4.1.31.1	Product Details	
4.1.31.2	Format	
	TION PRODUCTS AND DESCRIPTIONS	
	NSO-1) SCN Support Schedules	
4.2.1.1	Product Details	
4.2.1.1	Format	
	VS1-5) (USN-3) Station Raw Tracking Data	
4.2.2 (*	Product Details	
4.2.2.1	Format	
=.=.	VS1-10) (USN-6) Archived VC0 Telemetry Data	
4.2.3.1	Product Details	
4.2.3.2	Format	
	VS1-11) (USN-7) Archived VC1 Telemetry Data	
4.2.4.1	Product Details	
4.2.4.1	Format	
	VS1-12) (WS1-13) Archived Telemetry Data File	
4.2.5.1	Product Details	
4.2.5.2	Format	
	VS1-6) (WS1-7) (USN-4) (USN-5) (SN-1) Real-time Orbiter Telemetry Data	
4.2.6.1	Product Details	
4.2.6.2	Format	
	VS1-1) (USN-1) Station Status Packets	
4.2.7.1	Product Details	
	Format	
	VS1-2) (USN-2) Weather Data	
4.2.8.1	Product Details	
4.2.8.2	Format	
	VS1-3) (WS1-4) Ka-Band Telemetry	
4.2.9 (V	Product Details	
4.2.9.1	Format	
4.2.9.2	(WS1-8) Ka-Band RF Receiver Data	
4.2.10	Product Details	
4.2.10.1	Format	
4.2.10.2	(WS1-14) (WS1-16) Raw Telemetry File Data	
4.2.11	(WSI-14) (WSI-10) Raw Telemetry File Data Product Details	
4.2.11.1	Format	
4.2.12	(DSN-1) DSN Tracking Data	
4.2.12.1	Product Details	4-108

iv

4.2.12.2 Format	
4.2.13 (DSN-2) (DSN-3) Real-time Telemetry Data	
4.2.13.1 Product Details	
4.2.13.2 Format	
4.2.14 (DSN-5) (DSN-6) Archived Telemetry Data	
4.2.14.1 Product Details	4-112
4.2.14.2 Format	4-112
4.2.15 (DSN-4) DSN Station Monitor Packets	4-112
4.2.15.1 Product Details	4-112
4.2.15.2 Format	
4.3 SCIENCE OPERATION CENTER PRODUCTS AND DESCRIPTIONS	
4.3.1 (CRaTER-1) (DLRE-1) (LAMP-1) (LEND-1) (LOLA-1) (LROC-1) (MIRF-1) LRO Operations	
Activity Request.	
4.3.1.1 Product Details	
4.3.1.2 Format	
4.3.2 (LOLA-5), (LROC-4), (MIRF-4) Target Request	
4.3.2.1 Product Details	
4.3.2.2 Format	
4.3.3 (DLRE-2) (LAMP-2) (LOLA-3) (MIRF-2) Instrument FSW Load	4-119
4.3.3.1 Product Details	4-120
4.3.3.2 Format	4-120
4.3.4 (LOLA-2) LOLA Improved Lunar Gravity Model	4-125
4.3.4.1 Product Details	
4.3.4.2 Format	
4.3.5 (LOLA-4) LOLA Processed OD Information	
4.3.5.1 Product Details	
4.3.5.2 Format	
4.3.6 (LOLA-6) LOLA Processed Laser Ranging Data	
4.3.6.1 Product Details	
4.3.7 (LOLA-7) Lunar Laser Retro-Reflector Event Information	
4.3.7.1 Product Details	
4.3.7.2 Format	
4.3.8 (LR-1) Laser Ranging Schedule Information	
4.3.8.1 Product Details	
4.3.8.2 Format	
4.3.9 (LROC-2) LROC Instrument Initialization Command Sequence	4-133
4.3.9.1 Product Details	4-133
4.3.9.2 Format	
4.3.10 (LROC-3) LROC Daily Command Sequence	
4.3.10.1 Product Details	
4.3.10.2 Format	
4.3.11 (MIRF-3) Mini-RF Command Timeline	
4.3.11.1 Product Details	
4.3.11.2 Format	
4.4 LRO FSWM FACILITY TO LRO MISSION MOC INTERFACE PRODUCTS	
4.4.1 (FSWM-1) Orbiter FSW Load Files	
4.4.1.1 Product Details	
4.4.1.2 Format	
4.5 LRO MISSION OPERATIONS CENTER PRODUCTS AND DESCRIPTIONS	4-145
4.5.1 (MOC-7) Daily Command Load Report	
4.5.1.1 Product Details	
4.5.1.2 Format	
4.5.2 (MOC-2) SPICE SCLK Clock Correlation File	
4.5.2 (MOC-2) SPICE SCLK Clock Correlation File	
4.5.2.1 Product Details	
т. <i>J.2.2</i> ГОШац	

4.5.3 (MOC-33) SPICE Event Kernel	
4.5.3.1 Product Details	
4.5.3.2 Format	
4.5.4 (MOC-40) SPICE FK – Frame Kernels	
4.5.4.1 Product Details	
4.5.4.2 Format	
4.5.5 (MOC-41) SPICE Predicted CK (Predicted S/C Oriented	<i>ution</i>)
4.5.5.1 Product Details	
4.5.5.2 Format	
4.5.6 (MOC-42) SPICE Definitive CK (Definitive S/C Oriented	ation)
4.5.6.1 Product Details	
4.5.6.2 Format	
4.5.7 (MOC-43) SPICE Definitive HGA Orientation CK	
4.5.7.1 Product Details	
4.5.7.2 Format	
4.5.8 (MOC-44) SPICE Definitive SA Orientation CK	
4.5.8.1 Product Details	
4.5.8.2 Format	
4.5.9 Instrument – Spacecraft Housekeeping Data File	
4.5.9.1 Product Details	
4.5.9.2 Format	
4.5.10 Instrument Housekeeping Data Files	
4.5.10.1 Product Details	
4.5.10.2 Format	
4.5.11 Instrument Raw Measurement Data Files	
4.5.11.1 Product Details	
4.5.11.2 Format	
4.5.12 (MOC46 – MOC60) Meta Summary Reports	
4.5.12.1 Product Details	
4.5.12.2 Format	
4.5.13 Real-time VC0 housekeeping data	
4.5.13.1 Product Details	
4.5.13.2 Format	
4.5.14 (MOC-73) Archived CRaTER VC0 Telemetry File	
4.5.14.1 Product Details	
4.5.14.2 Format	
4.5.15 (MOC-30) Mini-RF Operations Opportunity	
4.5.15.1 Product Details	
4.5.15.2 Format	
4.5.16 (MOC-62) RTS Command Load Report	
4.5.16.1 Product Details	
4.5.17 (MOC-71) Data Recorder Model Report	4-175
4.5.17.1 Product Details	
4.5.17.2 Format	
4.6 MOC PRODUCTS TO STATIONS	
4.6.1 (MOC-34) (MOC-36) Real-time Orbiter Commands (W	
4.6.1.1 Product Details	
4.6.1.2 Format	
4.6.2 (MOC-35) DSN Real-time Orbiter Commands	
4.6.2.1 Product Details	
4.6.2.1 Format	
4.7 NAVIGATION AND ANCILLARY INFORMATION FA	
182	CILIT I (INAII) INTERFACE AND I RODUCTS4-
	1 100
4.7.1 (NAIF-1) SPICE Planetary SPK	
4.7.1.1 Product Details	

4.7.1.2 Format	
4.7.2 (NAIF-2) SPICE LSK – Leap Second	
4.7.2.1 Product Details	
4.7.2.2 Format	
4.7.3 (NAIF-3) SPICE Generic PCK (Planetary Constants)	
4.7.3.1 Product Details	
4.7.3.2 Format	
4.7.4 (NAIF-4) SPICE Lunar Reference Frame	
4.7.4.1 Product Details	
4.7.4.2 Format	
4.8 LAUNCH SITE (KSC) PRODUCT AND DESCRIPTIONS	
4.8.1 (KSC-1) (KSC-2)Real-time Orbiter Telemetry	
4.8.1.1 Product Details	
4.8.1.2 Format	
4.8.2 (KSC-3) Archived VC0 Orbiter Telemetry	
4.8.2.1 Product Details	
4.8.2.2 Format.	
4.8.3 (KSC-4) Archived VC1 Telemetry Data	
4.8.3.1 Product Details	
4.8.3.2 Format	
4.8.4 (KSC-5)Archived VC2 Telemetry Data	
4.8.4.1Product Details4.8.4.2Format.	
4.8.5 (KSC-6) Archived VC3 telemetry Data	
4.8.5.1 Product Details	
4.8.6 (LV-1) Launch Vehicle Post Separation Vector 4.8.6.1 Product Details	
4.8.6.1 Product Details	
4.9 LRO MOC PRODUCT INTERFACE WITH THE LAUNCH SITE	
4.9.1 (MOC-38) Telemetry to KSC	
4.9.1.1 Product Details 4.9.1.2 Format	
4.9.1.2 Format	
4.9.2 (MOC-57) Commands to KSC	
4.9.2.1 Froduct Details	
4.9.2.2 Format	
4.9.3. (MOC-09) LKO-Frovided Separation Data File	
4.9.3.2 Format	
4.10 LRO MOC PRODUCT INTERFACE WITH THE FLIGHT DYNAMICS FACILITY	
4.10.1 (MOC-63) Propulsion System Data	
4.10.1.1 Product Details	
4.10.1.2 Format	
4.10.2 (MOC-65) Definitive Spacecraft Body Frame Attitude File	
4.10.2.1 Product Details	
4.10.2.2 Format	
4.10.3 (MOC-66) Spacecraft HGA Motion File	
4.10.3.1 Product Details	
4.10.3.2 Format	
4.10.4 (MOC-67) Spacecraft Solar Array Motion File	
4.10.4.1 Product Details	
4.10.4.2 Format	
4.10.5 (MOC-68) OBC Generated Attitude Data File	
4.10.5.1 Product Details	
4.10.5.2 Format	
4.10.6 (MOC-72) LRO Thruster Data	

vii

4.10.		
4.10.		
4.10.7	(MOC-74) Predictive LRO Spacecraft Body Attitude File	
4.10. 4.10.		
	RO MOC PRODUCT INTERFACES WITH CDDIS (VIA THE LOLA SOC)	
4.11.1	(MOC-64) Laser Ranging GO Flag	
4.11.		
4.11.		
APPENDIX	A: – ABBREVIATIONS AND ACRONYMS	A-1
	B – SAMPLE PRODUCT FORMATS	
	DF Products	
B.1.1	(FDF-6) INP-2 Acquisition Data Sample	
B.1.2	(FDF-10) OEM Acquisition Data Sample	
B.1.2 B.1.3	(FDF-70) OEM Acquisition Data Sample	
В.1.3 В.1.4	(FDF-7) EK Frediction Data Sample	
B.1.4 B.1.5	(FDF-9) Ground Station View Period Predicts Data Sample	
В.1.5 В.1.6	(FDF-9) Ground Station View Period Fredicts Data Sample	
В.1.0 В.1.7		
В.1.7 В.1.8	(FDF-4) LRO Definitive Ephemeris File Sample (FDF-13) Lunar Orbit Ascending and Descending Node Predicts Sample	
Б.1.8 В.1.9		
	(FDF-14) Lunar Orbit Terminator Crossing Predicts Sample	
B.1.10	(FDF-15) Mission Eclipse Predicts Data Sample	
B.1.11	(FDF-16) Lunar Ephemeris Data Sample	
B.1.12	(FDF-17) Orbiter Thruster Maneuver Plans Data Sample	
B.1.13	(FDF-19) Orbiter Post Maneuver Report Data Sample	
<i>B.1.14</i>	(FDF-18) Post Separation Report Data Sample	
B.1.15	(FDF-20) Predicted LRO Ephemeris File Sample	
B.1.16	(FDF-21) Predicted Lunar Ground Track File Sample	
B.1.17	(FDF-22) Definitive Lunar Ground Track File Sample	
B.1.18	(FDF-23) Orbiter State Vector Table Sample	
B.1.19	(FDF-25) Thruster Calibration Data File Sample	
B.1.20	(FDF-37) Solar Conjunction File Sample	
B.1.21	(FDF-38) Target Thruster Vector File Sample	
B.1.22	(FDF-39) LR Ground Station View Period Sample	
B.1.23	(FDF-44) Trajectory Insertion Data Sample	
SPACE CO	MMUNICATIONS DATA PRODUCTS	
B.1.24	(GNSO-1) Station Support Schedules Sample	
B.1.25	(WS1-2) and (USN-2) Station Weather Data Sample	
B.1.26	(WS1-8) Ka-Band RF Receiver Data File Sample	
SCIENCE C	OPERATIONS CENTER PRODUCTS	
B.1.27	(CRaTER-1) (DLRE-1) (LAMP-1) (LEND-1) (LOLA-1) (LROC-1) (MIRF-1) LRC	Operations
Activity	P Request Sample	
B.1.28	(LOLA-4), (LROC-4), (MIRF-4) Target Requests	
B.1.29	(DLRE-2) DLRE FSW Load Samples	
B.1.30	(LAMP-3) LAMP Instrument FSW Load Sample	
B.1.31	(LOLA-2) LOLA Improved Lunar Gravity Model Sample	B-33
B.1.32	(LOLA-3) LOLA Instrument FSW Load Sample	B-34
B.1.33	(LOLA-6) LOLA Processed Laser Ranging Data Sample	
B.1.34	(LOLA-7) Lunar Laser Retro-Reflector Avoidance Event File Sample	
B.1.35	(LR-1) Laser Ranging Schedule Data Sample	
B.1.36	(LROC-3) LROC Daily Command Sequence Sample	

viii

B.1.37	(MIRF-2) Mini-RF Load Files	B-39
B.1.38	(MIRF-3) Mini-RF Command Timeline Files	B-40
MISSION OPE	RATIONS CENTER PRODUCTS	B-41
B.1.39	(MOC-7) Daily Command Load Report Sample	B-41
B.1.40	(MOC-62) RTS Command Load Report Sample	B-42
B.1.41	(MOC-2) SCLK SPICE Clock Correlation File Sample	B-43
B.1.42	(MOC-40) SPICE FK – Frame Kernel Sample	B-45
B.1.43	(MOC-41- MOC-44) SPICE CK File Comments Sample	B-48
B.1.44	(MOC-30) Mini-RF Operations Opportunity Sample	B-50
B.1.45	(MOC-46 thru MOC-60) Meta-Summary Report Sample	
B.1.46	(MOC-63) Propulsion System Data File Sample	B-54
B.1.47	(MOC-65) Definitive Spacecraft Body Frame Attitude File	
B.1.48	(MOC-66) Spacecraft HGA Motion File	
B.1.49	(MOC-67) Spacecraft Solar Array Motion File	B-57
B.1.50	(MOC-68) OBC Generated Attitude Data File	B-58
B.1.51	(MOC-72) LRO Thruster Data File	B-59
B.1.52	(MOC-74) Predictive LRO Spacecraft Body Attitude File	B-60
B.1.53	(MOC-64) Laser Ranging Go-NOGO Flag Sample File	B-61
B.1.54	(MOC-69) LRO-Provided Separation Data Sample File	B-62
B.1.55	(MOC-71) Data Recorder Model Report Sample File	B-63

LIST OF FIGURES

Figure 2-1 LRO Ground System Overview Diagram	<u>Page</u> 2-3
Figure 2-2 LRO Communications Architecture	2-6
Figure 2-3 LRO MOC Logical Architecture	
Figure 4-1 FDF Maneuver Plan Header Concept	4-54
Figure 4-2 FDF Maneuver Plan Initial Thruster Data Concept	4-54
Figure 4-3 FDF Maneuver Plan Final Thruster Data Concept	4-55
Figure 4-4 Solar Conjunction Geometry Examples	4-69
Figure 4-5 SMEX/LEOT Telemetry Header	4-85
Figure 4-6 Common SLE Format Header Structure	4-109
Figure 4-7 Instrument FSW Load File Structure	4-121
Figure 4-8 Missing Segment Boundaries	4-162
Figure 4-9 Missing and Deleted Segment Boundaries	4-163
Figure 4-10 ITOS Annotation Header Layout	4-167
Figure 4-11: Recorder Model Scenario	4-175
Figure 4-12 EOS Ground Message Header	4-179
Figure B.1-1 Sample INP-2 Acquisition Data File	B-1
Figure B.1-2 Sample OEM Acquisition Data File	B-2
Figure B.1-3 Sample Laser Ranging Prediction Data File	B-3
Figure B.1-4 Sample Space Network Acquisition Data File	B-4
Figure B.1-5 Sample Ground Station View Period Predicts Data File	B-5
Figure B.1-6 Sample LRO Beta Angle Predict File	B-6
Figure B.1-7 Sample LRO Definitive Ephemeris File	B-7
Figure B.1-8 Sample Lunar Orbit Ascending and Descending Node Predicts File	B-8

Figure B.1-9 Sample Lunar Orbit Terminator Crossing Predicts Data File	B-9
Figure B.1-10 Sample Mission Eclipse Predicts Data File	B-10
Figure B.1-11 Sample Lunar Ephemeris Data File	B-11
Figure B.1-12 Sample Orbiter Thruster Maneuver Plans Data File	B-12
Figure B.1-13 Sample Orbiter Post Maneuver Report Data File	B-13
Figure B.1-14 Sample Post Separation Report Data File (Page 1 of 2)	B-14
Figure B.1-15 Sample Post Separation Report Data File (Page 2 of 2)	B-15
Figure B.1-16 Sample Predicted LRO Ephemeris File	B-16
Figure B.1-17 Sample Predicted Lunar Ground Track File	B-17
Figure B.1-18 Sample Definitive Lunar Ground Track File	B-18
Figure B.1-19 Sample LRO State Vector Table Data File	B-19
Figure B.1-20 Sample Thruster Calibration Data File	B-20
Figure B.1-21 Sample Solar Conjunction File	B-21
Figure B.1-22 Sample Target Thruster Vector File	B-22
Figure B.1-23 Sample LR Ground Station View Period File	B-23
Figure B.1-24 Sample Trajectory Insertion Data File	B-24
Figure B.2-1 Sample Station Support Schedules File	B-25
Figure B.2-2 Sample Station Weather Data File	B-26
Figure B.2-3 Sample Ka-Band RF Receiver Data File	B-27
Figure B.3-1 Sample LRO Operations Activity Request File	B-28
Figure B.3-2 Sample Target Requests File	B-29
Figure B.3-3 Sample DLRE Scan Table Load File	B-30
Figure B.3-4 Sample DLRE FSW Load File	B-31
Figure B.3-5 Sample LAMP Instrument FSW Load File	B-32
Figure B.3-6 Sample LOLA Improved Lunar Gravity Model	B-33

Figure B.3-7 Sample LOLA Instrument FSW Load File	B-34
Figure B.3-8 Sample LOLA Processed Laser Ranging Data File	.B-35
Figure B.3-9 Sample Lunar Laser Retro-Reflector Avoidance Event File	.B-36
Figure B.3-10 Sample Laser Ranging Schedule Data File	.B-37
Figure B.3-11 LROC Daily Command Sequence File	.B-38
Figure B.3-12 Sample Mini-RF Load File	.B-39
Figure B.3-13 Sample Mini-RF Command Timeline File	.B-40
Figure B.4-1 Sample Daily Command Load Report File	.B-41
Figure B.4-2 Sample RTS Command Load Report File	.B-42
Figure B.4-3 Sample SCLK SPICE Clock Correlation File (page 1 of 2)	.B-43
Figure B.4-4 Sample SCLK SPICE Clock Correlation File (page 2 of 2)	.B-44
Figure B.4-5 Sample SPICE FK – Frame Kernel	.B-47
Figure B.4-6 Sample SPICE CK File Comments (Page 1 of 2)	.B-48
Figure B.4-6 Sample SPICE CK File Comments (Page 2 of 2)	.B-49
Figure B.4-7 Sample Mini- Operations Opportunity File	.B-50
Figure B.4-8 Sample Meta-Summary Report (No Gaps)	.B-51
Figure B.4-9 Sample Meta-Summary Report (Missing Data Segments)	.B-51
Figure B.4-10 Sample Meta-Summary Report (Deleted Data Segments)	.B-52
Figure B.4-10 Sample LROC Science Meta-Summary Report (No Missing Data Segments)	B-53
Figure B.4-11 Sample Propulsion System Data File	.B-54
Figure B.4-12 Sample Definitive Spacecraft Body Frame Attitude File	.B-55
Figure B.4-13 Sample Spacecraft HGA Motion File	.B-56
Figure B.4-14 Sample Spacecraft Solar Array Motion File	.B-57
Figure B.4-15 Sample OBC Generated Attitude Data File	.B-58
Figure B.4-16 Sample LRO Thruster Data File	.B-59

Figure B.4-17 Sample Predictive LRO Spacecraft Body Attitude File	B-60
Figure B.4-18 Sample Laser Ranging Go-NOGO Flag File	B-61
Figure B.4-19 Sample LRO-Provided Separation Data File	B-62
Figure B.4-20 Sample Data Recorder Model Report File	B-63
LIST OF TABLES	Deee
<u>Table</u> Table 2-1 MOC Functional Component Information	<u>Page</u> 2-7
Table 3-1 LRO External Interface Products Cross Reference	3-1
Table 4-1 FDF File Naming Convention	4-25
Table 4-2 FDF – SCN Acquisition Data Description	4-27
Table 4-3 FDF – Laser Ranging Prediction Data Description	4-34
Table 4-4 FDF – IIRV TTY SN Acquisition Data Description	4-36
Table 4-5 FDF – Ground Station View Period Data Description	4-39
Table 4-6 FDF – Ground Station No View Period Data Description	4-40
Table 4-7 FDF – LRO Beta Angle Data Description	4-42
Table 4-8 FDF – LRO Definitive Ephemeris Data Description	4-43
Table 4-9 FDF – LRO Ascending Descending Node Data Description	4-46
Table 4-10 FDF – LRO Lunar Orbit Terminator Crossing Predicts Data Description	4-48
Table 4-11 FDF – LRO Mission Eclipse Data Description	4-49
Table 4-12 FDF – Lunar Ephemeris Data Description	4-50
Table 4-13 FDF – LRO State Vector Table Data Description	4-52
Table 4-14 FDF – LRO Post Separation Report Data Description Information	4-60
Table 4-15 FDF – LRO Predictive Ephemeris Data Description Information	4-61
Table 4-16 FDF – LRO Predicted Ephemeris Data Description Information	4-63
Table 4-17 FDF – LRO Definitive Lunar Ground Track Description Information	4-64
Table 4-18 FDF – Solar Conjunction Data Description	4-71

Table 4-19 FDF – Laser Ranging View Period Data Description	4-76
Table 4-20 FDF – Trajectory Insertion Data Description	4-80
Table 4-21 LRO Operations Activity Request Definitions	4-81
Table 4-22 SMEX/LEOT Field Definitions and Expected Values	4-85
Table 4-23 SCN Station Support Schedule Field Definitions	4-88
Table 4-24 WS1 Raw Tracking Data File Field Definitions	4-91
Table 4-25 Station Weather Data Field Definitions	4-103
Table 4-26 WS1 Ka-Band Receiver Data Field Definitions	4-106
Table 4-27 SLE Telemetry Header Structure Definitions	4-110
Table 4-28 LRO Operations Activity Request Definitions	4-114
Table 4-29 Instrument FSW Load Directive File Data Definitions	4-122
Table 4-30: Current Set of Available LROC Commands	4-136
Table 4-32 SOC File Naming Conventions and Descriptions	4-157
Table 4-33 Meta-Summary Report Description	4-163
Table 4-33 Meta-Summary Report Description for LROC and Mini-RF Science Files	4-165
Table 4-34 ITOS Annotation Header Field Definitions	4-167
Table 4-35 Data Recorder Memory Model Description	4-176
Table 4-36 EOS Ground Message Header Definitions	4-180
Table 4-37 Best Estimated Separation Data Description	4-193
Table 4-41 OBC Calculated Attitude Data File (MOC-68) Description	4-202
Table 4-42 Propulsion Data File (MOC-72) Description	4-205

1.0 INTRODUCTION

The Interface Control Document for the Lunar Reconnaissance Orbiter Ground System (431-ICD-000049) is one of three documents produced by the Lunar Reconnaissance Orbiter (LRO) ground system team that provides the foundation for the development and operations of the ground system for all mission phases. The other documents are the Lunar Reconnaissance Orbiter Detailed Mission Requirements Document (431-RQMT-000049) and the Lunar Reconnaissance Orbiter Mission Design Handbook (431-HDBK-000486).

This document provides the Level-3 mission interface requirements and identifies the products, which are noted in that document and provided within the scope of this document.

1.1 PURPOSE AND SCOPE

The ICD specifies the interface that the LRO ground system (GS) has with the Space Communications Network (SCN) and the various science centers, as well as the external interfaces with other LRO mission operations center (MOC) elements.

This ICD documents the interfaces and products among the various external elements and is valid during the pre-mission phase through the end of the prime mission phase. The project will reevaluate the interfaces and required products for the LRO Extended Mission phase.

1.2 DOCUMENT ORGANIZATION

The document organization provides details regarding the various ground system elements and the interfaces and products between the external LRO elements and the LRO ground system.

Section 2.0 contains a brief description of the mission, ground system architecture, and identifies the various ground system elements. More detailed and specific information on the orbiter, launch vehicle, schedules, and mission phases is provided by the LRO Mission Concept of Operations (MCO).

Section 3.0 provides the cross reference of the external products to/from the LRO MOC; it provides a mapping of DMR requirements and the cross reference to other document sections, which is linked to provide more specific details.

Section 4 provides the call out of each external interface and the associated products that are transferred between LRO external elements and the LRO ground system elements.

Outstanding open items within the ICD are identified as "To Be Determined" (TBD), "To Be Supplied" (TBS), or "To Be Resolved" (TBR). Open items are documented in the List of TBDs/TBRs section in the front of the document.

1.3 REQUIREMENTS TRACEABILITY METHODOLOGY

The ground system interfaces specified in this document are derived from the Lunar Reconnaissance Orbiter Detailed Mission Requirements Document (431-RQMT-0000048), which identified the specific instance associated with the interface description.

1.4 APPLICABLE DOCUMENTS

The following LRO project documents apply only to the extent they are cited in this document.

1-1

431-RQMT-000174	Lunar Reconnaissance Orbiter Mission Assurance Requirements
431-RQMT-000048	Lunar Reconnaissance Orbiter Detailed Mission Requirements Document
431-HDBK-000052	Lunar Reconnaissance Orbiter Telemetry and Command Formats Handbook
431-HDBK-000053	Lunar Reconnaissance Orbiter Telemetry and Command Database Handbook
431-PLAN-000050	LRO Ground System Mission Operations Support Plan (MOSP)
431-SPEC-000078	Lunar Reconnaissance Orbiter CCSDS File Delivery Protocol Specification
431-HDBK-000486	Lunar Reconnaissance Orbiter Mission Design Handbook
431-RQMT-000113	LRO Pointing and Alignment Requirements
453-ICD-GN/WS1	Interface Control Document for the White Sands One Ground Station (WS1)
451-MOA-002960	FDF-GS&O Operations Agreement

1.5 REFERENCED DOCUMENTS

The following NASA and GFSC documents are used as supporting and reference documents only.

-	
NASA NPR 2810.1a	NASA Security of Information Technology; Revalidated 12 August 2004
STDN-724	Spaceflight Tracking and Data Network (STDN) Tracking and Acquisition Handbook; 1990
820-013 0163-Telecomm	DSN Space Link Extension Forward Link Service and Return Link Service; Revision A – February 15, 2004
820-13 TRK 2-33	DSN document to define external interface for SPICE SPK, Type 13
820-13, 0168	Service Management Interface document
887-117	SPS Portal Operation Manual
CCSDS 502.0-B-1	Orbit Data Messages, September 2004
RTL-ICD-T720HDR, Rev1.2	High Data Rate Receiver Interface Control Document

1.6 OTHER DOCUMENTED REFERENCES

Format data concepts specifically needed to support the laser ranging sites

http://ilrs.gsfc.nasa.gov/products_formats_procedures/crd.html http://ilrs.gsfc.nasa.gov/products_formats_procedures/predictions/cpf.html http://naif.jpl.nasa.gov/naif/about.html https://spsweb.fltops.jpl.nasa.gov

1-2

2.0 GROUND SYSTEM OVERVIEW

The Lunar Reconnaissance Orbiter (LRO)'s primary objectives are to conduct investigations that support future human exploration of the Moon.

LRO specific objectives are:

- Characterize the lunar radiation environment, biological impacts, and potential mitigation
- Determine a high resolution global, geodetic grid of the Moon in three dimensions
- Assess in detail the resources and environments of the Moon's polar cap regions
- Perform high spatial resolution measurement of the Moon's surface

The LRO instrument complement includes six instruments. Together, all six instruments allow LRO to meet the mission objectives. The following text provides an overview description of the six instruments:

- Lunar Orbiter Laser Altimeter (LOLA): LOLA will determine the global topography of the lunar surface at high resolution, measuring landing site slopes and search for polar ice in shadow regions.
- Lunar Reconnaissance Orbiter Camera (LROC): LROC will acquire targeted images of the lunar surface capable of resolving small-scale features that could be landing site hazards. LROC will also produce wide-angle images at multiple wavelengths of the lunar poles to document the changing illumination conditions and potential resources.
- **Lunar Exploration Neutron Detector (LEND):** LEND will map the flux of neutrons from the lunar surface to search for evidence of water ice and provide measurements of space radiation environment which can be useful for future human exploration.
- **Diviner Lunar Radiometer Experiment (DLRE)**: DLRE will map the temperature of the entire lunar surface at 300-meter horizontal scales to identify cold-traps and potential ice deposits.
- Lyman-Alpha Mapping Project (LAMP): LAMP will observe the entire lunar surface in the far ultraviolet (UV). LAMP will search for surface ice and frost in the Polar Regions and provide images of permanently shadowed regions illuminated only by starlight.
- **Cosmic Ray Telescope for Effects of Radiation (CRaTER):** CRaTER will investigate the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background space radiation.

LRO will also fly a technology demonstration instrument called the Mini-Radio Frequency (RF). The purpose of the Mini-RF is to demonstrate new radar technology for future use in planetary resource mapping. The mini-RF payload will operate on a non-interference basis throughout the mission.

The LRO spacecraft bus will be built at Goddard Space Flight Center (GSFC). Integration of the measurement instruments to the orbiter system as well as orbiter environmental testing will be performed at GSFC.

The orbiter will be launched aboard an evolved expendable launch vehicle (EELV) from the Eastern Range at the Kennedy Space Center (KSC). The Launch Vehicle (LV) will inject LRO into a cis-lunar transfer orbit. LRO will be required to perform a series of Lunar Orbit Insertion (LOI) maneuvers to enter into the orbiter commissioning orbit of 30x216 kilometers (km). After orbiter commissioning is complete, LRO will be maneuvered into a 50 km circular orbit.

Once LRO is in the final mission orbit, the six instruments will start to collect measurement data for the mission. Measurement data along with housekeeping (HK) data will be dumped to the LRO Ground System (GS). Once the data are received at the MOC, the MOC is responsible for distribution of the data to the individual science operations centers (SOCs). The SOCs will receive and process the data to create level 1 data products. The LRO GS and SOCs also have the responsibility to transfer the processed data products to the Planetary Data System (PDS) for long term archival.

The details of the mission with the identification of the mission phases and the activities with each phase are provided in the Lunar Reconnaissance Orbiter Mission Design Handbook (431-HDBK-000486)

2.1 GROUND SYSTEM ARCHITECTURE

The LRO GS is comprised of several main elements as shown in Figure 2-1 LRO Ground System Overview Diagram:

- The LRO Space Communications Network, which consists of an S/Ka Band ground station at White Sands and various USN-provided S-Band only ground stations located throughout the world. It includes the Deep Space Network for use as a contingency/emergency network and a laser ranging facility, which is used to provide improved orbit knowledge for the orbiter. The LRO mission uses the Space Network (SN) asset for the first several hours post-launch to provide any necessary support until the first ground station coverage.
- Mission Operations Center (MOC)
- Flight Dynamics (FD), which supports maneuver planning, orbit determination, and attitude determination and sensor calibration processing
- SOC for each instrument; while not actually part of the LRO Ground System, they are identified as residing within the LRO Ground Segment
- Communications network which provides voice and data connectivity between each of these elements

LRO elected to use a combined S/Ka ground station at White Sands because of the high data volume that the Orbiter will produce and the requirements to use the Ka-band for the downlink of the measurement data. The measurement data are collected at the ground station and rate buffered to the MOC post-pass for data processing/accountability. The MOC at GSFC will distribute the measurement files along with other mission products that are needed for

2-2

processing to each of the instrument SOCs. The MOC is the focal point for all orbiter operations including health and safety monitoring. All commands to the orbiter are generated at the MOC. The SOCs support instrument operations including instrument command sequence inputs, measurement data processing, transferring measurement products to the PDS, and instrument housekeeping and performance trending.

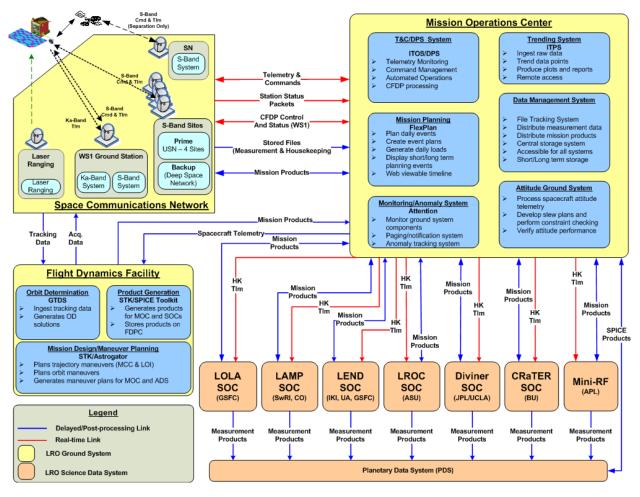


Figure 2-1 LRO Ground System Overview Diagram

Each LRO Ground System element, as listed in Figure 2-1, is briefly described in the following subsections.

2.1.1 The LRO Space Communications Network

The LRO Space Communications Network (SCN) consists of a prime and backup station located at White Sands Complex. White Sands One (WS1) is identified the prime antenna for LRO support; LRO uses the Solar Dynamics Observatory (SDO) backup antenna (STSS) in the event of WS1 facility or equipment outages of a short duration.

2-3

LRO uses the commercial S-Band ground stations to provide S-band TT&C support. The Jet Propulsion Laboratory (JPL)/DSN ground stations provide for backup/emergency support to the LRO SCN for the LRO mission, which includes maneuver support. The SN supports any post-launch contacts within the first several hours after launch that are required before either the WS1 station or the USN or DSN stations have a contact with the LRO Orbiter.

While not officially part of the SCN, there are several laser ranging sites to provide one-way laser time of flight data and support, through the LOLA SOC, the development of an improved lunar gravity model.

The WS1 ground station is capable of receiving 100 megabits per second (Mbps) downlink on Ka-Band frequency of measurement data files produced by the instruments and supporting realtime commands and telemetry on S-Band frequency. Due to susceptibility to Ka from weather, White Sands provides the optimal location due to its minimal precipitation levels. Because LRO requires near continuous tracking data for orbit determination, additional S-Band sites are needed. The S-Band only sites will provide real-time telemetry and commands capabilities along with tracking data. The S-Band stations could be used to dump low rate measurement files in a contingency mode. LRO plans to use the Deep Space Network for emergency/backup support. The emergency/backup support will utilize only the S-Band frequency.

2.1.2 LRO Mission Operations Center

The MOC will be located at GSFC. It is the main telemetry and command interface to the orbiter. The MOC will process housekeeping data to monitor health and safety of the orbiter. The MOC will also distribute measurement data to the individual SOCs along with other required mission products. The MOC provides data storage for all raw measurement data for the life of the mission. The MOC will receive any required instrument command sequences from the SOCs and process them before uplink. The MOC will also distribute real-time telemetry to the SOCs.

The LRO MOC provides the following types of control functions as listed below; these functional components will be further described and identified in later sections.

- Telemetry& Command (T&C) System
- Mission Planning System
- Trending System
- Attitude Ground System (AGS)
- Data Processing System
- Data Management System
- Monitoring and Alert System

2.1.3 <u>The Science Operations Centers</u>

The six SOCs and the Mini-RF technology demonstration operations center provide the hardware and software to support the following functions:

• Instrument health and safety monitoring

2-4

- Instrument command sequence generation/request
- Support orbiter calibration planning/coordination
- Measurement data processing (level 0 and higher)
- Measurement data product archiving and transfer to the PDS
- Maintain instrument flight software/tables

The SOCs themselves are not controlled and developed by the LRO ground system. The ground system responsibility ends with the interfaces to/from each of the SOCs

2.1.4 Flight Dynamics Facility

Flight Dynamics Facility (FDF) is hosted at GSFC; it has separate facilities that provide support for the standard orbit determination and product generation and the mission design, maneuver planning and trajectory support.

Flight dynamics (FD) supplies three FD teams, Orbit Team (made up of MOMS contractors in the FDF), Maneuver Team (made up of civil servants from Code 595,) and the Attitude Team (made up of a combination of MOMS contractors and 595 civil servants) to provide support for the LRO mission.

The Orbit Team and Maneuver Team provide LRO support from the Flight Dynamics Facility (FDF) in building 28. From the FDF facility, the Maneuver Team will have access to the orbit determination solutions, the MOC data sent to the FD Product Center (FDPC), the FDPC for outgoing maneuver plans and the FDF network for placing predicted trajectory data for planning products. For orbit determination, FD will receive the tracking data from the ground network and generate mission products. Besides pre-mission trajectory and orbit planning, FD will also monitor and plan for trajectory maneuvers during the cruise, Lunar Orbit Insertion burns, and station-keeping maneuvers; FD supplies these maneuver plans to the MOC for command uplink and Orbiter execution.

The Attitude Team will provide LRO support during early mission from the LRO MOC. FD will also provide attitude verification and planning support for slews. At a negotiated time after launch, the attitude support transitions to the LRO mission operations team.

2.1.5 Ground System Communications

The ground system communication network provides voice and data connectivity between each of the ground system elements. It will provide the necessary communication lines between the ground networks, MOC and SOCs.

Figure 2-2 depicts the communication architecture among the various LRO elements. It includes the space communications networks, the Kennedy Space Center (KSC), the GSFC MOC, and the seven science centers, which are located at various sites within the continental US. The communication links consist of dedicated communications lines, circuits, and routers.

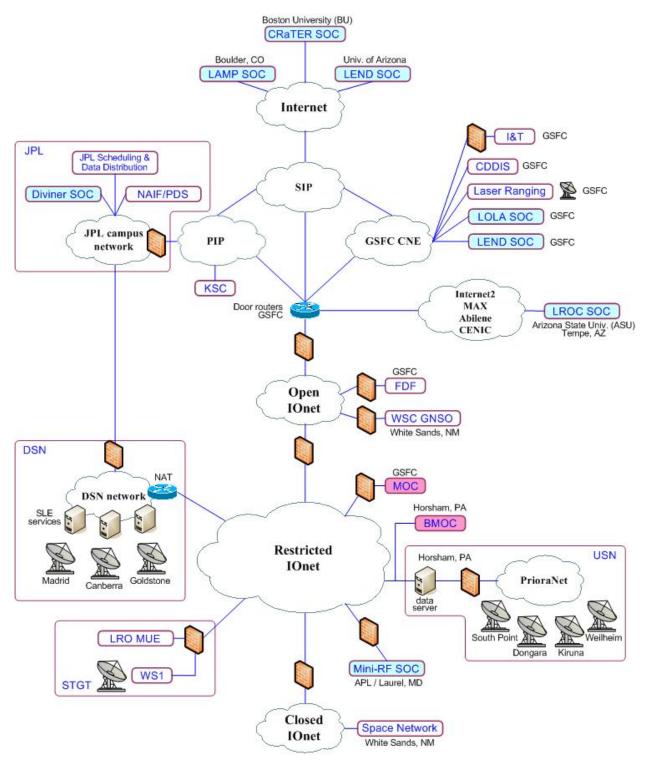


Figure 2-2 LRO Communications Architecture

2-6

Communication among the I&T GSE, GS elements, the various science centers, and dedicated ground station at the White Sands Complex (WSC), the JPL/DSN backup/emergency ground stations, and the commercial S-Band network is accomplished through the Nascom Division and the NASA Integrated Services Network (NISN). NISN maintains both a secure or "closed" Internet Protocol (IP) Operational Network (IONet), an unsecured or "open" IONet, and a hybrid Restricted IONet (RIONet).

All LRO MOC GS elements are on the restricted IONet; the FDF component, located at GSFC in Building 28, resides on the closed IONet; FDF provides access to other FDF-related services, which reside on the Open IONet. NISN supplies the IP access connection from the closed, restricted, and open IONets and to the Center Network Environment (CNE) Wide Area Network (WAN).

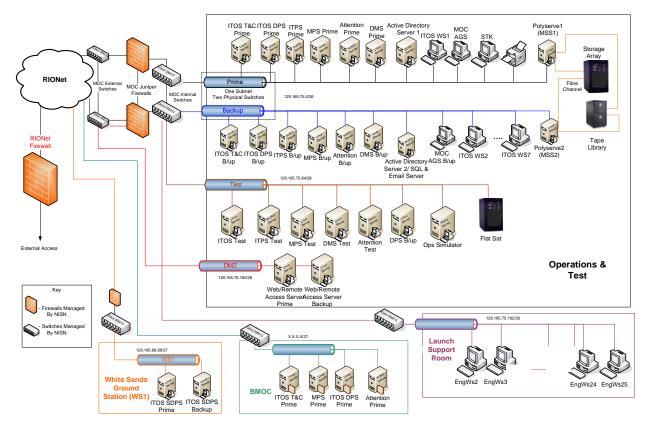
If the MOC needs to send any real-time data from the restricted IONet to any external network, the MOC will provide this data using a socket connection through a secure applications gateway, as depicted in Figure 2-2.

LRO SE personnel conducted a trade study and selected the secure copy (scp) mechanism for non real-time data transfers. All files into and out of the MOC will use this identified protocol. The LRO MOC will scp files from the MOC to an agreed upon directory locations that the external elements have identified. Conversely, the external elements will scp their files to a standard input directory structure within the LRO MOC. The MOC and external elements will negotiate these details as part of future Operations Agreements.

2.2 LRO MOC OPERATIONAL SYSTEMS

The LRO orbiter monitoring and control functions of the GS are performed within the LRO MOC by the Mission Operations Team (MOT). The ITOS GS element typically performs its functions in real time during an LRO spacecraft ground contact and is located within the real-time portion of the MOC. The LRO GS architecture is depicted in Figure 2–4.

LRO mission planning, command load generation, trend analysis, and attitude determination functions of the GS also are performed within the LRO MOC by the LRO MOT. These elements perform their functions using data from prior spacecraft passes and other sources. The products of these elements may be used during a LRO spacecraft ground contact and are located within the offline portion of the MOC.


This set of GS elements that support both real-time and offline functionality are defined and identified in the following table:

Functional Element	Component	Provider	Section Reference
Telemetry and Command	ITOS	GOTS – GSFC 584	Section 2.2.1
Mission Planning	FlexPlan	COTS – GMV	Section 2.2.4
Trending and Analysis	ITPS	GOTS – GSFC 583	Section 2.2.6

 Table 2-1 MOC Functional Component Information

Functional Element	Component	Provider	Section Reference
Data Processing System	ITOS/DPS	GOTS – GSFC 584	Section 2.2.2
Data Management System	DMS	GOTS – GSFC 584	Section 2.2.3
Monitoring and Alert System	ATTENTION	COTS – Attention SW, Inc	Section 2.2.7
Attitude Ground System	AGS	GOTS – Code 595	Section 2.2.5

Figure 2-3 depicts a logical representation of the MOC architecture and provides the scope of what HW/SW elements are located within the MOC as well as the security boundary as noted by the routers and firewalls.

Figure 2-3 LRO MOC Logical Architecture

2.2.1 ITOS-Supported Real-time Telemetry and Commanding

The real-time telemetry and command portion of ITOS receives virtual channel (VC) telemetry identified as VC0 and VC1. ITOS processes the engineering data and displays it to the MOT for monitoring the health and safety of the LRO spacecraft. ITOS processes the VC0 data and generates attitude data files for use by the AGS. ITOS archives engineering data files for later

2-8

trending analysis by ITPS. ITOS performs the following real-time functions in support of the spacecraft health and safety:

- Receive command files from FlexPlan
- Performs real-time commanding using the received files from the FlexPlan
- Transmits real-time data packets to instrument ground support equipment (IGSE) during L&EO
- Transmits real-time packet data to the various science centers
- Performs real-time commanding
- Generates log files for spacecraft health and safety monitoring by Attention
- Subsets the data packets into usable files for ingest by the ITPS
- Provides a file (or files) of attitude data to the AGS component for use in the single board computer (SBC) attitude verification, to perform sensor calibrations, and to support other attitude maneuver functions

2.2.2 Data Processing System

ITOS provides the functionality of the Data Processing System (DPS); this is the primary interface to the station front end units for receiving and processing files transmitted using the Consultative Committee for Space Data Systems (CCSDS) File Delivery Protocol (CFDP). The DPS is responsible for ensuring a reliable transfer of data and that the data received on the ground is in the same format in which it was stored on the spacecraft.

There will be two active units, one at the station for high data rate capture and one at the MOC for low data rate capture and uplink of table and memory files. The system located within the LRO MOC is identified as the MOC Data Processing System (MDPS); the system resident at the White Sands station is referenced as the station DPS (SDPS). The station and MOC DPS are both setup and controlled by the ITOS system at the MOC and all commanding is coordinated and funneled through the ITOS for uplink to the spacecraft.

The WS1 DPS will provide temporary data storage and deliver data products to the Data Management System after processing is complete for a file. The WS1 DPS can receive the science data in any virtual channel (nominally it is commanded to be downlinked in either VC2 or VC3, but the spacecraft could be commanded to downlink the data in any VC), and performs data accountability. The MOC DPS nominally receives spacecraft housekeeping files on VC1; however, the spacecraft can be commanded to downlink science data in VC1 also. ITOS/DPS then distributes the data to the ITOS/DMS component for eventual transmission to the appropriate science team for further data analysis.

2.2.3 Data Management System

The DMS performs data file management for all mission products archived in the MOC, with the added functionality of marking products required for review with electronic signatures. The DMS system interfaces directly with all MOC systems and the storage array to accomplish all desired tasks. All product flows are the result of a DMS transaction and recorded in the DMS database.

2-9

This component provides the data file archiving, data file dissemination, and provides a mechanism that can be used to track the delivery of data file products, which the LRO MOC transfers to the other LRO ground segment elements, such as the Ground Networks, the SOCs and the PDS. DMS receives the corresponding files from another source, such as FDF or the DPS components (for VC1, VC2, and VC3 data files) and performs data transfer and accountability to ensure that the files are delivered to the correct recipient and delivered error free.

2.2.4 Mission Planning System

FlexPlan was chosen as the mission planning system; it provides the short term daily planning and the long term projected planning for mission operations. FlexPlan receives science planning information from the science centers, maneuver planning data from FDF, and spacecraft health and safety commands from the operations team. The LRO mission planner uses the FlexPlan to generate and maintain daily planning activities as well as spacecraft command files that are forwarded to the ITOS for uplink to the spacecraft.

2.2.5 <u>Attitude Ground System</u>

The AGS provides the attitude determination validation and attitude sensor calibration; it is a COTS/GOTS system developed by the Flight Dynamics Branch at GSFC. It receives the onboard attitude quaternion data from the LRO spacecraft via DMS, performs sensor calibration, applies biases and misalignment information to the data, and validates the on-board calculated attitude solutions from the spacecraft.

The AGS creates the unified set of commanded attitude quaternion data that is associated with all orbiter off-nadir slews or for orbit-adjust maneuvers and momentum management requests.

2.2.6 Trending and Analysis System

The LRO Ground System and Operations team choose the Integrated Trending and Plotting System (ITPS) as the trending system; it provides the capability to ingest, store, analyze and display spacecraft health and safety data. ITPS will ingest and archive all mission housekeeping and engineering data to perform full data analysis and will also process the data to provide a reduced resolution data containing min/max/mean & standard deviation.

2.2.7 Monitoring and Alert System

The LRO Ground System and Operations team choose the Attention COTS product as the Monitoring and Alert System. This system is resident in the LRO MOC and it provides a comprehensive solution for spacecraft and ground system monitoring. The system interfaces with all MOC ground components, monitoring system events and software tasks. Upon recognizing anomalous events, the Monitor and Alert System initiates the pre-defined notification and reporting procedures to ensure that a proper response is received. The MAS ensures that data are accumulated to support the MOT in their research activities and to assists the MOT to correct the anomalous behavior. For spacecraft supports the monitoring system creates pass summaries to keep a record of all supports including commands sent; procedures executed, and specified event messages. The monitoring system compares entries in these pass log files against a predefined set of limits and checks. If an event or data value is flagged as a

2-10

problem, the monitoring system issues a notification to one of a selected group of operations personnel of a spacecraft anomaly and providing an informative, textual message identifying the anomaly situation.

2.3 FLIGHT DYNAMICS FACILITY

The FDF provides the prime support for all orbit determination, generation of predictive and definitive orbital products, and generation of acquisition data. The FDF is located in Building 28 at GSFC.

During all phases of the LRO mission, the FDF receives the station-tracking data, which includes two-way Doppler tracking, laser ranging data, and ranging data. FDF determines the spacecraft orbit and generates predicted and definitive spacecraft ephemerides. The predicted ephemeris is used to provide acquisition data to all ground stations. FDF will supply the operations team with all mission planning aids. The laser ranging data will not be used for day-to-day navigation support of the mission. It will be used during post-processing (likely several months after real-time) to improve the orbital solutions at higher accuracy.

The FDF provides processing and control for all maneuvers and generates the trajectory maneuver commands for all mission phases.

2.4 MISSION OPERATIONS TEAM

The MOT personnel are responsible for managing the health and safety of the spacecraft following initial acquisition. They are the focal point of LRO GS operations during the life of the mission. In this capacity, they

- Coordinate the various operational entities
- Conduct operational tests with the spacecraft during the prelaunch phase
- Conduct operational testing of the LRO MOC facility systems
- Lead the GS operations efforts for the life of the mission

2.5 FLIGHT SOFTWARE MAINTENANCE FACILITY

The Flight Software and Maintenance Facility (FSMF) interfaces with the LRO program's I&T GSE system. It is responsible for maintaining the onboard flight software (FSW) starting approximately 60 days after launch until the end of the mission.

2.6 LRO SPACE COMMUNICATIONS NETWORK

The LRO mission requires support from a variety of networks identified as the Space Communications Network (SCN):

- 1. The Ka and S-Band antennas located at WS1 will provide the prime station support for the LRO mission. LRO uses the Solar Dynamics Observatory (SDO) backup antenna, which is collocated at the White Sands area. LRO will use the SDO/LRO STSS S-Band backup Station, as negotiated with SDO, in the event that there is an outage of the WS1 antenna.
- 2. A second network will provide commercial S-band support for the LRO mission. The LRO mission contracted this support to the Universal Space Network (USN). The USN

2-11

Network Management Center (NMC) is located in Horsham, Pennsylvania. For the LRO mission, USN uses two prime remote ground stations (RGSs) located at Dongara, Australia and Weilham, Germany. USN maintains two backup stations to support the LRO mission; these stations are located at South Point, Hawaii, and Kiruna, Sweden.

- 3. The DSN, operated by the JPL located in Pasadena, California, maintains three stations at Goldstone, California; Madrid, Spain; and Canberra, Australia. DSN is designated for emergency/backup support for telemetry, tracking, and command interface during the initial acquisition, during any orbit maneuvers, or at any other times when a spacecraft emergency is identified.
- 4. Laser Ranging facility, which is located in Greenbelt, Maryland, provides one-way laser time of flight data and supports, through the LOLA SOC, the development of an improved lunar gravity model. In support of using the Laser Ranging facility, the LRO MOC will provide some products to the <u>Crustal Dynamics Data Information System</u> (CDDIS); this facility acts as a clearing house to provide LRO data to potential other laser ranging sites around the world.

The Space Network (SN) will be used for launch support and for post separation coverage. The SN shall provide S-band (DG2 mode 2) telemetry and command services post separation through the first two hours of the mission.

3.0 LRO GS EXTERNAL INTERFACE PRODUCT SYNOPSIS

This section provides a listing of all external products used by, generated by, or stored by the LRO MOC or other Ground Segment Elements, such as FDF to DSN interface products. Table 3-1 provides a comprehensive listing of all LRO external interfaces defined to date. This table reflects the product name, identifies who created the product and who uses the product, and provides a cross-reference to a DMR identifier to track where this interface product originates and who uses this interface product within their processing flow. It also provides a mapping to another document section in which a user can lookup more details regarding a product. As reference within this table and throughout this document, there may appear to be missing product identifiers. These Product IDs were deleted as a result of combining some products into a common format.

										Des	stir	nati	on	(s)											
No.	ID	Product Name	Source	C R a T E R	D L R E	A M	Ε	R O	Mini-RF					C / I T	A I F	F D F	D S N	S C N	S D P S	S C Z / G Z S O	U S N	S N	Section Reference	DMR Reference	
1	CRaTER-1	LRO Operations Activity Request	CRaTER									•											Section 4.3.1	DMR-51, DMR-52, DMR-218, DMR-77, DMR-573	
2	DLRE-1	LRO Operations Activity Request	DLRE																				Section 4.3.1	DMR-51, DMR-52, DMR-218, DMR-77, DMR-573	
3	DLRE-2	DLRE FSW Loads	DLRE																				Section 4.3.3	DMR-51, DMR-52, DMR-573	
4	DSN-1	DSN Tracking Data	DSN													•							Section 4.2.12	DMR-354, DMR-52,	

Table 3-1 LRO External Interface Products Cross Reference

3-1

											C)es	tin	atic	on(s)								
No.	ID	Product Name	Source	C R a T E R	D L R	A M	L E N D	L O L A	L R O C	Mi i R F	K S C	C D D I S	DP	MOC/DMS		A F F D	F D F		D S C I N	/ G	U S N	S N	Section Reference	DMR Reference
5	DSN-2 DSN-3	Real-Time VC0 or VC1 telemetry data	DSN												•								Section 4.2.13	DMR-52, DMR-348, DMR-365
6	DSN-4	DSN Station Status Packets	DSN												•	,							Section 4.2.15	DMR-52, DMR-346, DMR-374
7	DSN-5 DSN-6	Archived VC0 or VC1Telemetry Data	DSN												•	,							Section 4.2.14	DMR-52, DMR-348
8	FDF-3	LRO Beta Angle Predict File	FDF/OD MOC/DMS	•	•	•	•	•	•	•				•									Section 4.1.8	DMR-51, DMR-52, DMR-594
9	FDF-4	LRO Definitive Ephemeris File	FDF/OD											•									Section 4.1.9	DMR-52, DMR-595
10	FDF-5	DSN Predict-Grade SPK Data	FDF/OD															•	•				Section 4.1.3	DMR-596, DMR-325
11	FDF-41	DSN Long Term Scheduling Grade SPK Data	FDF/OD																•				Section 4.1.4	DMR-701

3-2

											[Des	tin	ati	on(s)											
No.	ID	Product Name	Source	C R a T E R	D L R E	A M	N	L O L A	L R O C	M i - R F	K S C	C D D I S	D P			F / F D	- F C F F	= -	D S N	S C N	S D P S	S C N / G N S O	USN	SZ	Section Reference	DMR Reference	
12	FDF-6	INP2 Station	FDF/OD											•)							•			Section 4.1.1	DMR-571, DMR-325	
12	101-0	Acquisition Data	GNSO																				•		Section 4.1.1	DWIR-371, DWIR-323	
13	FDF-10	OEM Station	FDF/OD											•)							•			Section 4.1.2	DMR-571, DMR-325	
15	FDF-10	Acquisition Data	GNSO																				•		Section 4.1.2	Divin-571, Divin-525	
		Laser Ranging Site	FDF/OD											•	,											DMR-52, DMR-597, DMR-625, DMR-650,	
14	FDF-7	Prediction Data	DMS					•																	Section 4.1.5	DMR-653	
15	FDF-8	Space Network Acquisition Data	FDF/OD																					•	Section 4.1.6	DMR-641, DMR-325	
16	FDF-9	Ground Station View Period Predicts	FDF/OD											•	,							•			Section 4.1.7	DMR-52, DMR-598	
17	FDF-13	Lunar Orbit Ascending and	FDF/OD											•)										Section 4.1.12	DMR-52, DMR-599	
	_	Descending Node Predicts	MOC/DMS	•	•	•	•	•	•	•																- 1	

												Des	sti	nat	on	(s))									
No.	ID	Product Name	Source	C R a T E R	D L R E		L E N D	L O L A	L R O C	M i r F	k S C			M D P S		0 C / I T 0	NAIF/PDS	F D F	D S N	S C N	S D P S	S C N / G N S O	U S N	S N	Section Reference	DMR Reference
18	FDF-14	Lunar Orbit Terminator	FDF/OD												•										Section 4.1.13	DMR-52, DMR-600
10		Crossing Predicts	MOC/DMS	•	•	•	•	•	•	•															5000001 4.1.15	Divire 32, Divire 000
19	FDF-15	Mission Eclipse	FDF/OD																						Section 4.1.14	DMR-52, DMR-601
		Predicts	MOC/DMS	•	•	•	•		•	•																
20	FDF-16	Lunar Ephemeris	FDF/OD												•										Section 4.1.15	DMR-52, DMR-602
21	FDF-17	Orbiter Thruster Maneuver Plans	FDF/Man																						Section 4.1.17	DMR-52, DMR-603
22	FDF-18	Post-Separation Report	FDF/OD												•										Section 4.1.19	DMR-52, DMR-606
23	FDF-19	Orbiter Post	FDF/Man											,	•										Section 4.1.18	DMR-52, DMR-605
23	101-17	Maneuver Report	MOC/DMS					٠																	500000 7.1.10	Dunc 52, Dunc-005
24	FDF-20	Predicted LRO Ephemeris File	FDF/OD												D										Section 4.1.20	DMR-52, DMR-607

												Des	sti	nat	ion	n(s))									
No.	ID	Product Name	Source	C R a T E R	D L R E			LOLA	R	1	۲ S	5 D)	M D P S		M O C / I T O S	A I	F D F	D S N	S C N	S D P S	% C Z < G Z % O	U S N	SN	Section Reference	DMR Reference
25	FDF-21	Predicted Lunar	FDF/OD												•										Section 4.1.21	DMR-52, DMR-608
25	101 21	Ground Track File	MOC/DMS	•	•	•	•	•	•	•															5000001 4.1.21	Divite 52, Divite 600
26	FDF-22	Definitive Lunar	FDF/OD												•										Section 4.1.22	DMR-52, DMR-680
20	101-22	Ground Track File	MOC/DMS	٠	•	•	•	•	•	•															Section 4.1.22	Divite-52, Divite-000
27	FDF-23	Orbiter State Vector Table	FDF/OD												•										Section 4.1.16	DMR-52, DMR-613
28	FDF-25	Thruster Calibration Data	FDF/Man											,	•										Section 4.1.23	DMR-52, DMR-610
29	FDF-29	LRO Definitive	FDF/OD												•										Section 4.1.10	DMR-52, DMR-614
29	FDF-29	SPICE SPK File	MOC/DMS	•	•	•	•	•	•	•	Ì														Section 4.1.10	DWR-52, DWR-014
30	FDF-30	LRO Predictive	FDF/OD												•										Section 4.1.11	DMR-52, DMR-615
50	FDF-30	SPICE SPK File	MOC/DMS	•	•	•	•	•	•	•															5001011 4.1.11	DWIK-32, $DWIK-013$
		FDF Reprocessed SPICE Definitive	FDF								1				•											
31	FDF-36	Ephemeris Data SPK	MOC/DMS	•	•	•	•	•	•	•															Section 4.1.24	DMR-52, DMR-617

										I	Des	stir	nati	on	s)								
No.	ID	Product Name	Source	C R a T E R	D L R E	LAMP	LOLA	L R O C	M i - R F	K S C	C D D I S	F			M N D A F F D D S S	A F C F F F		S I D J P (S I S		U S N	SN	Section Reference	DMR Reference
32	FDF-37	Solar Conjunction	FDF																			Section 4.1.25	DMR-52, DMR-685
52	ГДГ-37	File	MOC/DMS															,	•			Section 4.1.23	DWR-32, DWR-083
33	FDF-38	Target Thruster Vector File	FDF/Man										•	•								Section 4.1.26	DMR-52, DMR-603
34	FDF-39	Laser Ranging Site View Period	FDF/OD																			Section 4.1.27	DMR-52, DMR-699
51	101 57	Predicts	DMS				•															500000111127	Diffe 52, Diffe 677
35	FDF-40	Definitive GTDS Ephemeris	FDF/OD										•	•								Section 4.1.28	DMR-52, DMR-700
36	FDF-42	FDF Time Coefficients File	FDF/OD										•	•								Section 4.1.29	DMR-52, DMR-702
37	FDF-44	Trajectory Insertion Data	FDF/OD											•								Section 4.1.30	DMR-52, DMR-706
38	FDF-45	LRO Operations Activity Request	FDF											•								Section 4.1.31	DMR-51, DMR-52, DMR-218, DMR-77, DMR-573

											[Des	tin	atic	on(s)										
No.	ID	Product Name	Source	C R a T E R	D L R E		L E N D	L O L A	L R O C	M i - R F		C D D I S	N D P S	MOC/DMS		F / F D D			D S N	S C N	S D P S	SCZ/GZSO	U S N	SN	Section Reference	DMR Reference
39	GNSO-1	SCN Support	WOTIS											•											Section 4.2.1	DMR-5, DMR-52,
57	010001	Schedules	DMS	•	•	•	•	•	•								•								500000 4.2.1	DMR-308, DMR-649
40	WS1-1	WS1 Station Status Packets	WS1																						Section 4.2.7	DMR-52, DMR-316, DMR-320, DMR-374
41	WS1-2	WS1 Weather Data	WS1											•											Section 4.2.8	DMR-52, DMR-574
71	W 51-2	WS1 Weather Data	MOC/DMS					•																	Section 4.2.0	Divite-52, Divite-574
42	WS1-3 WS1-4	Ka-Band telemetry	WS1																		•				Section 4.2.9	DMR-26, DMR-12, DMR-52, DMR-637, DMR-312, DMR-221
43	WS1-5	WS1 Raw Tracking	WS1											•			•	•							Section 4.2.2	DMR-5, DMR-4,
43	W 51-5	Data	MOC/DMS					•																	Section 4.2.2	DMR-52, DMR-322
44	WS1-6 WS1-7	Real-time Orbiter telemetry	WS1												•	•									Section 4.2.6	DMR-26, DMR-28, DMR-12, DMR-52, DMR-617, DMR-311
45	WS1-8	Ka-Band RF Receiver Data	WS1											•											Section 4.2.10	DMR-5, DMR-52,

										I	Des	stir	natio	on(s)								
No.	ID	Product Name	Source	C R a T E R	D L R E	L A P	L E N D		L R O C	K S C	D	F			F / P D D	, F D F) 5	D S B C N N) / • G	USN	SN	Section Reference	DMR Reference
46	WS1-10	Archived VC0 telemetry data	WS1										•									Section 4.2.3	DMR-5, DMR-13, DMR-52, DMR-575
47	WS1-11	Archived VC1 telemetry data	WS1										•									Section 4.2.4	DMR-5, DMR-13, DMR-52, DMR-575
48	WS1-12 WS1-13	Archived telemetry data File	WS1										•									Section 4.2.5	DMR-5, DMR-13, DMR-52, DMR-575
49	WS1-14 WS1-16	Raw Telemetry File Data	WS1/SDPS										•									Section 4.2.11	DMR-52, DMR-227
50	USN-1	USN Station Status Packets	USN											•	•							Section 4.2.7	DMR-52, DMR-334, DMR-374
51	USN-2	USN Weather Data	USN										•									Section 4.2.8	DMR-5, DMR-52,
51	0511-2		MOC/DMS					•								•	•					5001011 4.2.8	DMR-574
52	USN-3	Raw Tracking Data	USN										•			•)					Section 4.2.2	DMR-4, DMR-5,
52		Files	MOC/DMS					•															DMR-52, DMR-340
53	USN-4 USN-5	Real-time Orbiter telemetry	USN																			Section 4.2.6	DMR-37, DMR-38, DMR-52, DMR-322

											0	Des	tin	atic	on(s	5)							
No.	ID	Product Name	Source	C R a T E R	D L R E	L A P	L E N D	LOLA	LROC	Mini-RF	K S C	C D D I S	M D P S	M O C / D M S	M O C / I I T O S	A F P D	F D F	S	S C N		SN		DMR Reference
54	USN-6	Archived VC0 telemetry data	USN											•								Section 4.2.3	DMR-5, DMR-13, DMR-52, DMR-575
55	USN-7	Archived VC1 telemetry data	USN											•								Section 4.2.4	DMR-5, DMR-13, DMR-52, DMR-575
56	KSC-1 KSC2	Real-time Orbiter telemetry	KSC												•							Section 4.8.1	DMR-51, DMR-52, DMR-204
57	KSC-3	Archived VC0 telemetry data	KSC											•								Section 4.8.2	DMR-51, DMR-52, DMR-204
58	KSC-4	Archived VC1 telemetry data	KSC											•								Section 4.8.3	DMR-51, DMR-52, DMR-204
59	KSC-5	Archived VC2 telemetry data	KSC											•								Section 4.8.4	DMR-51, DMR-52, DMR-204
60	KSC-6	Archived VC3 telemetry data	KSC											•								Section 4.8.5	DMR-51, DMR-52, DMR-204
61	SN-1	Real-time VC0 Orbiter Telemetry	SN												•							Section 4.2.6	DMR-52, DMR-658

											I	Des	stir	nati	on	(s)										
No.	ID	Product Name	Source	C R a T E R	D L R E	L A M P	L E N D	L O L A	LROC	Mi i R F	K S C	D	E F				4 - F - C - F	=] =	S (S C N	D P	1	U S N	S N	Section Reference	DMR Reference
62	LAMP-1	LRO Operations Activity Request	LAMP											•	•										Section 4.3.1	DMR-51, DMR-52, DMR-218, DMR-77, DMR-573
63	LAMP-3	LAMP Instrument FSW Loads	LAMP											•	•										Section 4.3.3	DMR-52, DMR-573
64	LV-1	Launch Vehicle Post-Sep Vector	LV, via KSC Launch Support Team																						Section 4.8.6	DMR-557. DMR-655
65	LEND-1	LRO Operations Activity Request	LEND												•										Section 4.3.1	DMR-51, DMR-52, DMR-218, DMR-77, DMR-573
66	LOLA-1	LRO Operations Activity Request	LOLA											•	•										Section 4.3.1	DMR-51, DMR-52, DMR-218, DMR-77, DMR-573
67	LOLA-2	LOLA Gravity Model	LOLA DMS												•			•							Section 4.3.4	DMR-52
68	LOLA-3	LOLA Instrument FSW Loads	LOLA											•	•										Section 4.3.3	DMR-52, DMR-573

										[Des	tin	natio	on(s)							
No.	ID	Product Name	Source	C R a T E R	D L R E	L E N D	L O L A	LROC	Mini-RF		D				F / F D D	- F C 5 F		╎└		SN	Section Reference	DMR Reference
69	LOLA-4	LOLA Processed	LOLA										•								Section 4.3.5	DMR-52
07	LOLA	OD information	DMS													•					5001011 4.5.5	Divite 32
70	LOLA-5	LOLA Target Request	LOLA										•								Section 4.3.2	DMR-52, DMR-77
71	LOLA-6	LOLA Processed LR Data	LOLA													•					Section 4.3.6	DMR-51, DMR-52,
72	LOLA-7	Lunar Laser Retro- Reflector Events	LOLA										•	1							Section 4.3.7	DMR-51
73	LR-1	Laser Ranging Schedule	LR (via LOLA SOC)										•								Section 4.3.8	DMR-52, DMR-649
		Schedule	DMS													•						
74	LROC-1	LRO Operations Activity Request	LROC										•	1							Section 4.3.1	DMR-51, DMR-52, DMR-218, DMR-77, DMR-573
75	LROC-2	LROC Instrument Initialization Command Sequence	LROC										•								Section 4.3.9	DMR-51, DMR-52, DMR-77

												Des	sti	nat	ior	ı(s)									
No.	ID	Product Name	Source	C R a T E R	D L R E		L E D	L O L A	L R O C	M i r F	K S C				/ D	MOC/ITOS	NAIF/PDS	F D F	D S N	S C N	S D P S	% C Z < G Z % O	U S N	SN	Section Reference	DMR Reference
76	LROC-3	LROC Command Timeline	LROC												•										Section 4.3.10	DMR-51, DMR-52, DMR-77
77	LROC-4	LROC Target Request	LROC												•										Section 4.3.2	DMR-51, DMR-52, DMR-77
78	MIRF-1	LRO Operations Activity Request	Mini-RF												•										Section 4.3.1	DMR-51, DMR-52, DMR-218, DMR-77, DMR-573
79	MIRF-2	Mini-RF Load Files	Mini-RF												•										Section 4.3.3	DMR-51, DMR-52, DMR-573
80	MIRF-3	Mini-RF Command Timeline	Mini-RF												•										Section 4.3.11	DMR-51, DMR-52, DMR-77
81	MIRF-4	Mini-RF Target Requests	Mini-RF												•										Section 4.3.2	DMR-51, DMR-52, DMR-77
82	MOC-2	SPICE SCLK – Clock Correlation File	МОС	•	•	•	•	•	•	•								•							Section 4.5.2	DMR-51. DMR-670

											D	est	tina	atio	n(s	s)										
No.	ID	Product Name	Source	C R a T E R	D L R E					M i R F	K S C	C D D I S	M D P S	MOC < DMS) A F	- F E 5 F	= D : F	D S N	S C N	S D P S	S C N / G N S O	U S N	S N	Section Reference	DMR Reference
83	MOC-3	CRaTER - Spacecraft HK Data File	MOC/DMS	•																					Section 4.5.9	DMR-51, DMR-254
84	MOC-4	CRaTER HK Data Files	MOC/DMS	•																					Section 4.5.10	DMR-51, DMR-254, DMR-259
85	MOC-5	CRaTER Raw Measurement Data Files	MOC/DMS	•																					Section 4.5.11	DMR-51, DMR-254, DMR-259, DMR-261
86	MOC-6	CRaTER Real-time VC0 HK data	MOC/ITOS	•																					Section 4.5.13	DMR-51, DMR-392, DMR-255, DMR-256, DMR-257
87	MOC-73	Archived CRaTER VC0 Telemetry File	MOC/DMS	•																					Section 4.5.14	DMR-51
88	MOC-7	Daily Command Load Report	MOC/DMS	•	•	•	•	•	• •	•															Section 4.5.1	DMR-51
89	MOC-62	RTS Command Load Report	MOC/DMS	•	•	•		•	•	•															Section 4.5.16	DMR-51

											I	Des	tin	atio	on(s)										
No.	ID	Product Name	Source	C R a T E R	D L R E		L E N D	L O L A	L R O C	M i i - R F	K S	C D D I S) / / 	4	F D F	D S N	S C N	S D P S	SCN/GNSO	U S N	S N	Section Reference	DMR Reference
90	MOC-8	DLRE - Spacecraft HK Data File	MOC/DMS		•																				Section 4.5.9	DMR-51, DMR-254
91	MOC-9	DLRE HK Data Files	MOC/DMS		•																				Section 4.5.10	DMR-51, DMR-254, DMR-259
92	MOC-10	DLRE Raw Measurement Data Files	MOC/DMS		•																				Section 4.5.11	DMR-51, DMR-254, DMR-259, DMR-261
93	MOC-11	DLRE Real-time VC0 HK data	MOC/ITOS		•																				Section 4.5.13	DMR-51, DMR-392, DMR-255, DMR-256, DMR-257
94	MOC-12	LAMP - Spacecraft HK Data File	MOC/DMS			•																			Section 4.5.9	DMR-51, DMR-254
95	MOC-13	LAMP HK Data Files	MOC/DMS			•																			Section 4.5.10	DMR-51, DMR-254, DMR-259
96	MOC-14	LAMP Raw Measurement Data Files	MOC/DMS			•																			Section 4.5.11	DMR-51, DMR-254, DMR-259, DMR-261

												Des	sti	nati	on	(s)										
No.	ID	Product Name	Source	C R a T E R	D L R	L A M P		L O L A	LROC	M i n - R F	ł	C D D C I S		M D C C / D N S			NAIF/PDS	F D F	D S N	S C N	S D P S	S C N / G N S O	U S N	S N	Section Reference	DMR Reference
97	MOC-15	LAMP Real-time VC0 HK data	MOC/ITOS			•																			Section 4.5.13	DMR-51, DMR-392, DMR-255
98	MOC-16	LEND - Spacecraft HK Data File	MOC/DMS				•																		Section 4.5.9	DMR-51, DMR-254
99	MOC-17	LEND HK Data Files	MOC/DMS				•																		Section 4.5.10	DMR-51, DMR-254, DMR-259
100	MOC-18	LEND Raw Measurement Data Files	MOC/DMS				•																		Section 4.5.11	DMR-51, DMR-254, DMR-259, DMR-261
101	MOC-19	LEND Real-time VC0 HK data	MOC/DMS				•																		Section 4.5.13	DMR-51, DMR-392, DMR-255
102	MOC-20	LOLA - Spacecraft HK Data File	MOC/DMS					•																	Section 4.5.9	DMR-51, DMR-254
103	MOC-21	LOLA HK Data Files	MOC/DMS					•																	Section 4.5.10	DMR-51, DMR-254, DMR-259
104	MOC-22	LOLA Raw Measurement Data Files	MOC/DMS					•																	Section 4.5.11	DMR-51, DMR-254, DMR-259, DMR-261

										[Des	tin	atio	on(s)									
No.	ID	Product Name	Source	C R a T E R	D L R E		LOLA	L R O C	Mini-RF	K S C	C D D I S) / / 	F D F	S	S C N	S D P S	S C N / G N S O	U S N	SN	Section Reference	DMR Reference
105	MOC-23	LOLA Real-time VC0 HK data	MOC/ITOS				•																Section 4.5.13	DMR-51, DMR-392, DMR-255
106	MOC-24	LROC Real-time VC0 HK data	MOC/ITOS					•															Section 4.5.13	DMR-51, DMR-392, DMR-255, DMR-256, DMR-257
107	MOC-25	LROC - Spacecraft HK Data File	MOC/DMS					•															Section 4.5.9	DMR-51, DMR-254
108	MOC-26	LROC HK Data Files	MOC/DMS					•															Section 4.5.10	DMR-51, DMR-254, DMR-259
109	MOC-27	LROC NAC Raw Measurement Data Files	MOC/DMS					•															Section 4.5.11	DMR-51, DMR-254, DMR-259, DMR-261-
110	MOC-39	LROC WAC Raw Measurement Data Files	MOC/DMS					•															Section 4.5.11	DMR-51, DMR-254, DMR-259, DMR-261
111	MOC-28	Mini-RF - Spacecraft HK Data File	MOC/DMS						•														Section 4.5.9	DMR-51, DMR-254

												Des	stir	nat	ior	ı(s)									
No.	ID	Product Name	Source	C R a T E R	D L R E		L E N D	L O L A	L R O C	M i i - R F	K S C			M	M O C / D	MOC/ITOS	NAIF/PDS	F D F	D S N	S C N	S D P S	0 0 Z 0 / Z 0 0	U S N	SN	Section Reference	DMR Reference
112	MOC-29	Mini-RF HK Data Files	MOC/DMS							•															Section 4.5.10	DMR-51, DMR-254, DMR-259
113	MOC-30	Mini-RF Operations Opportunity	мос							•															Section 4.5.15	DMR-51
114	MOC-31	Mini-RF Raw Measurement Data Files	MOC/DMS							•															Section 4.5.11	DMR-51, DMR-254, DMR-259, DMR-261
115	MOC-32	Mini-RF Real-time VC0 HK data	MOC/ITOS							•															Section 4.5.13	DMR-51, DMR-392, DMR-255, DMR-256, DMR-257
116	MOC-33	SPICE Event Kernel	MOC/DMS	•	•	•	•	•	•	•															Section 4.5.3	DMR-51. DMR-699
117	MOC-34 MOC-36	Real-time Orbiter Commands (WS1, USN and SN)	MOC/ITOS																	•			•	•	Section 4.6.1	DMR-51, DMR-30, DMR-40, DMR-319, DMR-337, DMR-640, DMR-663, DMR-300
118	MOC-35	DSN Real-Time orbiter commands	MOC/ITOS																•						Section 4.6.2	DMR-51, DMR-347, DMR-458, DMR-459

											[Des	tin	natio	on(s)										
No.	ID	Product Name	Source	C R a T E R	D L R E		L E N D	L O L A	LROC	Mini-RF	K S C	C D D I S				M N D A F F D C S	F C F		D S S (N I	6 C N	S D P S	S C N / G N S O	U S N	S N	Section Reference	DMR Reference
119	MOC-37	Commands to KSC	MOC/ITOS								•														Section 4.9.2	DMR-51
120	MOC-38	Telemetry to KSC	MOC/ITOS								•														Section 4.9.1	DMR-51, DMR-392
121	MOC-40	SPICE FK – Frame Kernels	Multiple LRO Groups	•	•	•	•	•	•	•				•			•	•							Section 4.5.4	DMR-51, DMR-621
122	MOC-41	SPICE Predicted CK (Predicted S/C Orientation)	AGS MOC/DMS	•	•	•	•	•	•	•				•											Section 4.5.5	DMR-51. DMR-619
123	MOC-42	SPICE Definitive CK (Definitive S/C Orientation)	AGS MOC/DMS	•	•	•	•	•	•	•				•			•	•							Section 4.5.6	DMR-51, DMR-620
124	MOC-43	SPICE Definitive HGA Orientation CK	AGS MOC/DMS	•		•	•	•						•			•								Section 4.5.7	DMR-51, DMR-616, DMR-259
125	MOC-44	SPICE Definitive SA Orientation CK	AGS MOC/DMS	•		•	•	•						•											Section 4.5.8	DMR-51, DMR-616, DMR-259

										Des	stii	nat	ion	n(s)									
No.	ID	Product Name	Source	C R a T E R	D L R E		N	L R O C	Nini- R			D P S	₩ 0 C / D	MOC/ITOS	NAIF/PDS	F D F	D S N	S C N	S D P S	SCZ < GZSO	U S N	SN	Section Reference	DMR Reference
126	MOC-46	CRaTER HK Meta Summary Report	DMS	•																			Section 4.5.12	DMR-51, DMR-688, DMR-259
127	MOC-47	CRaTER Measurement Meta Summary Report	DMS	•																			Section 4.5.12	DMR-51, DMR-688, DMR-259
128	MOC-48	DLRE HK Meta Summary Report	DMS		•																		Section 4.5.12	DMR-51, DMR-688, DMR-259
129	MOC-49	DLRE Measurement Meta Summary Report	DMS		•																		Section 4.5.12	DMR-51, DMR-688, DMR-259
130	MOC-50	LAMP HK Meta Summary Report	DMS			•																	Section 4.5.12	DMR-51, DMR-688, DMR-259
131	MOC-51	LAMP Measurement Meta Summary Report	DMS			•																	Section 4.5.12	DMR-51, DMR-688, DMR-259
132	MOC-52	LEND HK Meta Summary Report	DMS				•																Section 4.5.12	DMR-51, DMR-688, DMR-259

											De	est	ina	tio	n(s	s)										
No.	ID	Product Name	Source	C R a T E R	D L R E	L E N D	L O L A	L R O C	Nini-F	ר 		C D D I S	M D P S	MOC/DMS	MOC/ITOS	A F	. F C F	=	D S N	S C N	S D P S	SCN/GNSO	U S N	SN	Section Reference	DMR Reference
133	MOC-53	LEND Measurement Meta Summary Report	DMS			•																			Section 4.5.12	DMR-51, DMR-688, DMR-259
134	MOC-54	LOLA HK Meta Summary Report	DMS				•																		Section 4.5.12	DMR-51, DMR-688, DMR-259
135	MOC-55	LOLA Measurement Meta Summary Report	DMS				•																		Section 4.5.12	DMR-51, DMR-688, DMR-259
136	MOC-56	LROC HK Meta Summary Report	DMS					•																	Section 4.5.12	DMR-51, DMR-688, DMR-259
137	MOC-57	LROC NAC Meta Summary Report	DMS					•																	Section 4.5.12	DMR-51, DMR-688, DMR-259
138	MOC-58	LROC WAC Meta Summary Report	DMS					•																	Section 4.5.12	DMR-51, DMR-688, DMR-259
139	MOC-59	Mini-RF HK Meta Summary Report	DMS																						Section 4.5.12	DMR-51, DMR-688, DMR-259

										0	Des	tin	atio	n(s	5)									
No.	ID	Product Name	Source	C R a T E R	D L R E	LAMP	LOLA	LROC	Mini-RF	K S C	C D D I S	M D P S	/	M O C / I T O S	I F P D	F D F	D S N	S C N	S D P S	 	U S N	SN	Section Reference	DMR Reference
140	MOC-60	Mini-RF Measurement Meta Summary Report	DMS						•														Section 4.5.12	DMR-51, DMR-688, DMR-259
141	MOC-63	Propulsion System Data	DMS													•							Section 4.10.1	DMR-51
142	MOC-64	Laser Ranging Go Flag	DMS				•																Section 4.11.1	DMR-625
143	MOC-65	Definitive Spacecraft Body Frame Attitude File	AGS DMS										•			•							Section 4.10.2	DMR-51, DMR-703
		Frame Attitude File	DMS													•								
144	MOC-66	Spacecraft HGA Motion File	AGS										•										Section 4.10.3	DMR-51, DMR-704
		would he	DMS													•								
145	MOC-67	Spacecraft Solar	AGS										•										Section 4.10.4	DMR-51, DMR-705
110	1100 07	Array Motion File	DMS													•								
146	MOC-68	OBC Generated Attitude Data File	DMS													•							Section 4.10.5	DMR-51

											[Des	tin	atio	on(s)									
No.	ID	Product Name	Source	C R a T E R	DLRE	LAMP		LOLA	LROC	Mini-RF	K S	C D D I S) F / F			0 S 5 C 1 N	S D P S	SCN/GNSO	U S N	S N	Section Reference	DMR Reference
147	MOC-69	LRO Provided	AGS											•										Section 4.9.3	DMR-51, DMR-709
14/	MOC-09	Separation Data	DMS								•		1											Section 4.9.5	DWIK-31, DWIK-709
148	MOC-71	Data Recorder Model Report	МОС						•															Section 4.5.17	DMR-51
149	MOC-72	LRO Propulsion Data	МОС														•	•						Section 4.10.6	DMR-51
150	MOC-74	Predictive LRO Spacecraft Body	MOC/AGS											•	,									Section 4.10.7	DMR-51
130	MOC-74	Attitude File	DMS														•	•						Section 4.10.7	DMR-31
151	FSWM-1	Orbiter FSW Load Files	FSWM											•	,									Section 4.4.1	DMR-51, DMR-52,
152	NAIF-1	SPICE Planetary	JPL/NAIF											•	,									Section 4.7.1	DMR-51, DMR-52,
132	INAIF-I	SPK	MOC/DMS	•	•	•	•	•	•	•														5001011 4.7.1	D_{WIR}
			JPL/NAIF										1	•	,	1	1			1					DMR-51, DMR-52,
153	NAIF-2	SPICE LSK (Leap Second Kernel)	MOC/DMS	•	•	•	•	•	•	•														Section 4.7.2	

											[Des	tina	itio	n(s	5)								
No.	ID	Product Name	Source	C R a T E R	D L R E	A	L E N D	L O L A	L R O C	M i - R F	K S C	C D D I S	M D P S	MOC / DMS	MOC/ITOS	l F /	F D F	D S N	S C N	S C N / G N S O	S N	S N		DMR Reference
154	NAIF-3	SPICE Generic PCK (Planetary	JPL/NAIF											•									Section 4.7.3	DMR-51, DMR-52,
134	NAIF-3	Constants)	MOC/DMS	•	•	•	•	•	•	•													. Section 4.7.5	DWR-31, $DWR-32$,
155	NAIF-4	SPICE High Precision Lunar	JPL/NAIF											•									Section 4.7.4	DMR-51, DMR-52,
155	11/11/-4	Orientation PCK	MOC/DMS	٠	٠	٠	٠	•	•	۲													5001011 4.7.4	Divite-51, Divite-52,

4.0 LRO GROUND SYSTEM EXTERNAL INTERFACES AND PRODUCT

The following sections provide specific information regarding each product as listed in Table 3-1.

For each product, this ICD will provide the following details:

Product Details	Detail Description
Time interval	Step size within the file, if applicable. Such as: data point every minute, every 10 minutes
File duration	Total time contained within the file or total number of days contained within the file
File or Data Generation Frequency	How often is the file generated; daily, weekly, per pass
Delivery method (real-time, SCP, FTP, etc)	Real-time TCP socket Real-time UDP socket File delivery with secure copy (SCP) Standard File Transfer Protocol (FTP)
Data Volume	Total amount of data in either Kbytes, Mbytes, or GBytes)
Accuracy (if it applies)	Accurate to second, degrees, Km, etc (could be NA)
Other pertinent details	Provides additional details for the data product, if applicable; otherwise, set to NA

The LRO MOC supports 2 standard delivery protocols to support data delivery to/from the MOC. The LRO MOC uses a standard TCP/IP socket connection to support the transfer of real-time telemetry or commands or other real-time status information.

The USN and SN stations initiate the socket connection with the MOC's telemetry and command system. The LRO MOC issues the socket connection to the various SOCs; the MOC's telemetry distribution element will retry these connections a configurable number of times in the event of any dropped sockets.

4.1 FLIGHT DYNAMICS FACILITY PRODUCTS

This section provides the details of the products that the Flight Dynamics Facility creates to support the LRO mission. FDF creates these products on a regular basis to provide data for:

- station acquisition data,
- science operations center planning purposes,
- attitude and maneuver planning
- general reports to the Mission Operations Team

4-24

For products destined to the MOC, FDF generates these products using a standard naming convention as defined by the following concepts of a file name and a file extension separated by the standard period (.):

<file name>.<file extension>; where

<file name> → FDFnn_YYYYDDD_YYYYDDD_fnn; where

FDFnn	=>	5 ASCII characters in which the nn refers to the identifier listed as the LRO Ground System Product Matrix; for example FDF03 = LRO Beta Angle Predict File FDF14 = Lunar Orbit Terminator Crossing Predicts
Start Date of product YYYYDDD	=>	7 ASCII characters YYYY => 4 ASCII characters for the year (2008 – 2013) DDD => 3 ASCII characters for day of year designator (001 – 366); followed by the underscore (_) character
Stop Date of product YYYYDDD	=>	7 ASCII characters YYYY => 4 ASCII characters for the year (2008 – 2013) DDD => 3 ASCII characters for day of year designator (001 – 366); followed by the underscore (_) character
f	=>	Flag to indicate if maneuvers are modeled or included within the product B => Maneuvers are modeled. For definitive products, all maneuvers are modeled. For predictive products, at least one future maneuver is modeled. N => No maneuvers are modeled. For predictive products, the propagation includes no spacecraft perturbations and represents the product as if no spacecraft maneuvers are performed within the time span of the product
nn	=>	2 ASCII Digits to represent the version number for the file.

Table 4-1 FDF F	File Naming	Convention
	ne numing	001110111011

The initial creation of a file will be represented by version number 01; a subsequent version is 02, 03, etc. The YYYYDDD designation identifies the start date and the end date for which data are contained within the file. FDF generates the products to start at 0000Z on the start date and end at 0000Z on the end date so that there is always an overlap between products in the event that FDF was down and could not generate a new product until the previous had completely expired. FDF generates a product that has a start time of 0000Z for the start date and actually ends at 0000Z. In the example of a 10 day product (e.g., SCN Station Acquisition Data – FDF-6), the duration is 10 complete days, but the product includes 0000Z for the eleventh day.

For example, the name for the LRO Beta Angle Predict File, based on these concepts, is identified as FDF03_2009015_2009194_N01.txt. This assumes that the first data point represents a starting time of 0000Z on January 15, 2009 and an end date of July 14, 2009 at 0000Z and it was the first generation of the file and that no maneuvers were modeled.

<file extension> → 3-4 ASCII characters representing the type of file; e.g., txt, for a text file inp2 for the FDF generated SCN acquisition data product (version 2 of INP)

4-25

bsp, for a binary SPICE (SPK) file

bc, for a binary SPICE Attitude (CK) file

NOTE: this naming convention does not apply to the FDF generated INP Acquisition data product. For that specific product, FDF generates unique files names base on the 4-character station identifier, as noted in Section 4.1.1.

This naming convention is the standard, except where a different naming convention is noted that based upon other required mission concepts. These special cases will be explicitly called out in the corresponding sections.

This section of the ICD captures the FDF product creation and delivery schedule for the LRO mission from the beginning of commissioning orbit to the end of the nominal mission. The FDF-GS&O Operations Agreement (<u>451-MOA-002960</u>) documents the prelaunch, launch, and post launch products through the final Lunar Orbit Insertion maneuver. During this period of time, FDF will provide a subset of the nominal set of products needed to support LRO operations. Due to time constraints, these products do not have the same durations as specified below for the nominal mission.

4.1.1 (FDF-6) INP Station Acquisition Data

This product file contains acquisition information for the WS1, the SDO backup antenna, and the 2 USN owned ground station supporting the LRO telemetry and measurement data downlink or command uplink. FDF creates separate INP2 files that contain the station acquisition data for the specified station supporting the LRO mission.

When the WOTIS Scheduling Office receives the INP2 product, their systems automatically send the products to the corresponding WS1 or SDO backup antennas or to the USN sites.

Time interval	Data samples provided at 1 minute increments
File duration	10 days of station acquisition data starting at0000Z Wednesday for nominal deliveriesPost-maneuver updates will start at 00:00 GMT on the current day
File or Data Generation Frequency	Weekly, on Wednesday of the week, by noon-time, Eastern After maneuvers within best-effort available
Delivery method (real-time, SCP, FTP, etc)	FTP to WOTIS scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull) WOTIS FTP-es the INP2 files to USN, WS1S, and STSS stations
Data Volume	Variable; approximately 500 -700 Kbytes based on number of views per station and duration for each station view for each of the INP2 data file
Accuracy (if it applies)	Data accuracy is within 800 meters over the 84 hour predicts; Across maneuvers (orbit adjust or momentum unloads) accuracy is best available
Other pertinent details	Acquisition data are consistent with the predicted ephemeris data based upon the most recent tracking information

4.1.1.1 Product Details

4-26

4.1.1.2 Format

FDF generates the INP2 product as an ASCII text file. The file contains the acquisition data for each contact for the station; FDF generates one file for each station that contains the acquisition data. The file will have 1:N lines of header information that identifies the file description information. This is followed by 1:N lines of station acquisition information. The standard fields and field description (for the 1:N lines of acquisition data) are listed in the following table. Data will be provided down to an identified station masking elevation angle.

Field Characteristics
43 ASCII text characters representing the facility/station name to satellite/0059 (LRO). The station name is represented by the 4 ASCII text characters representing the unique station identifier. The field appears as follows:
Facility/NNNN to Satellite/0059/Sensor/Omni
Where NNNN represents the 4 character ASCII station name and 0059 is the 4- digit NASA SIC code for LRO. NNNN = WS1S for LRO White Sands S-band Station STSS for SDO S-Band backup Station USPS for USN Dongara, Australia USHS for USN South Point, Hawaii
 YYYYDDD.HHMMSS (GMT) ; 14 ASCII digits with a period between the first 7 and last 6; where YYYY => 4 ASCII digits of year (2008 – 2013) DDD => 3 ASCII digits for day of year (1 – 366)
HHMMSS => 6 ASCII digits representing the hours, minutes, and seconds of day
RRRRR.ddddd (Km)RRRRR => 6 ASCII digits for whole range (0 – 999999)ddddd => 5 ASCII digits for decimal portion of range (00000 – 99999)
RR.dddddd (Km/s)RR => 2 ASCII digits for whole range rate $(0 - 99)^{Note 1}$ dddddd => 6 ASCII digits for decimal portion of range (000000 - 999999)
AAA.ddd (Degree) AAA => 3 ASCII digits for whole angle measurement (0 – 360) ddd => 3 ASCII digits for decimal portion of range (000 – 999)
EEE.ddd (Degree) EEE => 3 ASCII digits for whole angle measurement $(0 - 90)$

Table 4-2 FDF – SCN Acquisition Data Description
--

4-27

A sample file name for the first generation of this data file has the following convention:

<f< th=""><th>ile name>_<start dat<="" th=""><th>te>_<</th><th><pre>Stop Date>_<maneuver flag="" model=""><version number="">.<file extension=""></file></version></maneuver></pre></th></start></th></f<>	ile name>_ <start dat<="" th=""><th>te>_<</th><th><pre>Stop Date>_<maneuver flag="" model=""><version number="">.<file extension=""></file></version></maneuver></pre></th></start>	te>_<	<pre>Stop Date>_<maneuver flag="" model=""><version number="">.<file extension=""></file></version></maneuver></pre>
where	File Name	=	[10 Characters], which includes an underscore character (_); the following field definitions are used to define the fields Station Identifier =>5 total ASCII Characters 4 ASCII Characters used to represent the stations supporting the LRO mission; followed by a 1 character underscore; see Table 4-2 above for the list of the 4 character station IDs Spacecraft Identifier => 5 total ASCII Characters 4 ASCII Digits used to identify the spacecraft = 0059; followed by a 1 ASCII character (_)
	Start Date	=	[8 ASCII Digits] used to represent the start date associated with the first station acquisition; in the form of: YYYYDDD; followed by a 1 character underscore
	Stop Date	=	[8 ASCII Digits] used to represent the start date associated with the first station acquisition; in the form of: yyyyddd; followed by a 1 character underscore
	Maneuver Model Flag	=	[1 characters] One ASCII character that indicates whether maneuvers were modeled for this product
			B => Maneuvers are modeled N => No maneuvers are modeled
	version number	=	[2 characters] Two ASCII character version number. The initial version is 01, next is 02 up to 99.
	file extension	=	[4characters] inp2 to represent the second format version of the (Internet Predict) INP data product
-	1 1 0		

For example, a sample file name for the acquisition data (INP2 product version) corresponding to the WS1 Dual Ka/S Band station (for the 10 day duration of Thursday, January 15, 2009 at 0000Z through Sunday, January 25, 2009 at 0000Z would have the following file name convention:

WS1S_0059_2009015_2009022_N01.inp2

An INP-2 sample station acquisition data product is provided as a reference in Appendix B, Figure B.1-1.

4.1.2 (FDF-10) OEM Station Acquisition Data

For the USN collaborative sites, FDF generates an acquisition data product using a standard CCSDS format identified as an Orbital Ephemeris Message (OEM) Data Product. FDF generates this product based on an "earth-centered" reference frame.

When the WOTIS Scheduling Office receives the OEM product, their systems automatically send the products to the corresponding USN sites.

4-28

4.1.2.1 Product Details

Time interval	Data samples provided at 1 minute increments
File duration	10 days of station acquisition data starting at 0000Z Wednesday for nominal deliveries Post-maneuver updates will start at 00:00 GMT on the current day
File or Data Generation Frequency	Weekly, on Wednesday of the week, by noon-time, Eastern After maneuvers within best-effort available
Delivery method (real-time, SCP, FTP, etc)	FDF FTP-es to WOTIS WOTIS FTP-es the OEM file to USN scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull)
Data Volume	Approximately 1.5 MBytes for an OEM data file
Accuracy (if it applies)	Data accuracy is within 800 meters over the 84 hour predicts; Across maneuvers (orbit adjust or momentum unloads) accuracy is best available
Other pertinent details	Acquisition data are consistent with the predicted ephemeris data based upon the most recent tracking information EME2000 is the reference frame

4.1.2.2 Format

The OEM Data product format is defined within the CCSDS Blue Book *CCSDS 502.0-B-1, Orbit Data Messages, September 2004;* Section 4 of that document defines the specific details for the OEM format, content and structure. As such, no format definitions are listed within this document.

FDF will generate the OEM data product as an earth-centered vector. This file corresponds to the standard FDF-generated file name, so no additional details are required to document the file name concept.

A sample file name for the first generation of this data file has the following convention:

<File name>_<Maneuver Model Flag><version number>.<file extension>

A sample file name for the OEM acquisition data for the 10 day duration of Thursday, January 15, 2009 at 0000Z through Sunday, January 25, 2009 at 0000Z would have the following file name convention:

FDF10_2009015_2009025_N01.0em

An OEM sample station acquisition data product is provided as a reference in Appendix B, Figure B.1-2.

4-29

4.1.3 (FDF-5) DSN Predict-Grade SPK Data

The DSN "Predict-Grade" site acquisition data describes the FDF-generated information necessary to allow the DSN 34-meter subnet to acquire the LRO spacecraft; this is the SPICE data that DSN uses to schedule the 34-m subnet antennas to support LRO contacts. This is the standard file that DSN uses to support nominal LRO operational activities, which include any emergency or routine/backup operations and monthly maneuvers.

The FDF-GS&O Operations Agreement (451-MOA-002960) documents the prelaunch, launch, and post launch products through the final Lunar Orbit Insertion maneuver and identifies any products that FDF is required to deliver to DSN.

FDF generates the DSN SPICE SPK prediction data that the DSN stations use as pointing information to track LRO and ensure data acquisition.

Time interval	Data samples provided at 1 minute increments
File duration	10 days of station acquisition data starting on at 0000Z Wednesday for nominal deliveries Post-maneuver updates will start at 00:00 GMT on the current day
File or Data Generation Frequency	Weekly, on Wednesday of the week, by noon-time, Eastern After maneuvers within best-effort available
Delivery method (real-time, SCP, FTP, etc)	FDF accesses the DSN Deep Space Mission System (DSMS) Service Preparation System (SPS) web- portal and posts the data file and associated meta data
Data Volume	Approx 6 Mbytes
Accuracy (if it applies)	Data accuracy is within 800 meters over the 84 hour predicts; Across maneuvers (orbit adjust or momentum unloads) accuracy is best available
Other pertinent details	Acquisition data are consistent with the predicted ephemeris data based upon the most recent tracking information DSN requires user authentication to access the SPS web site.

4.1.3.1 Product Details

4.1.3.2 Format

The format is the predicted SPICE SPK Transfer Format file; this format is consistent with the information listed at the following URL:

https://spsweb.fltops.jpl.nasa.gov

The file name conforms to the standard DSN-generated file name specifications and not the FDF concept as originally noted above. The file naming convention is defined as follows:

<File name>.<file extension>;

There is a period (.) used as the standard separator between the file name and file extension. The file name confirms to the following convention:

4-30

<Spacecraft Designator>_<SPK type>_<Duration>_<Start Date>_<version #>; the underscore (_) character is used as the separator between the file name qualifiers.

where	Spacecraft Designator	=	[3 ASCII Digits]; defaults to 085 for LRO Designation
	SPK Type	=	[8 ASCII Characters]; default to the following SPK type: baseline
	Duration	=	[5 ASCII Characters/Digits] in the form of nnday; where nn = the file duration qualifier $(01 - 99)$, followed by 3 ASCII character "day"
	Start Date	=	[8 ASCII Digits] in the form of yyyymmdd; where yyyy = 4 ASCII digits for start year (2008 – 2013) mm – 2 ASCII digits for start month (01 – 12) dd = 2 ASCII digits for start day (01 -31)
	Version #	=	[2 ASCII Digits]; 01 to 99
	File Extension	=	3 ASCII Characters]; defaults to xsp to represent the SPK Transfer Format Type

The table below provides the definitions for the file name and file extension qualifiers:

For example, a sample file name for the SPICE file (for the 10 day duration during the nominal mission phase of Thursday, January 15, 2009 at 0000Z) would have the following file name convention:

085_baseline_10day_20090115_01.xsp

Another reference for SPICE SPK data formats is:

http://naif.jpl.nasa.gov/naif

The SPICE ID for LRO is 125 (octal) or -85 (decimal). The SPK file will be type 13 with order of interpolation equal to 3. Since this product is a binary file, no sample product is listed in Appendix B.

4.1.4 (FDF-41) DSN Long-Term Scheduling Grade SPK Data

To maintain DSN mission readiness, FDF will provide a long-term "Scheduling-Grade" SPK Product to assist DSN in load planning and analysis efforts. The DSN Long-Term Scheduling Grade SPK Product has 6-month duration with no implied accuracy after the first 28 days since FDF does not model any maneuvers after the first 28-days. FDF generates this file using a numerical integration with a more accurately known and representable force model for the first 28 days. After that 28-day period, FDF still generates the file using a numerical integration technique, except that the force model is not as accurate.

4-31

4.1.4.1 Product Details

Time interval	Data samples provided at 10 minute increments
File duration	6 months days of station acquisition data starting at 0000Z Thursday for nominal deliveries
File or Data Generation Frequency	Monthly, on the first Wednesday of the week, by noon-time, Eastern After maneuvers within best-effort available
Delivery method (real-time, SCP, FTP, etc)	FDF accesses the DSN Deep Space Mission System (DSMS) Service Preparation System (SPS) web- portal and posts the data file and associated meta data
Data Volume	Approx 11 MBytes
Accuracy (if it applies)	Same accuracy as for the FDF05 product within the first 28 days No implied accuracy after the first 28 days
Other pertinent details	DSN requires user authentication to access the SPS web site.

4.1.4.2 Format

The format is the predicted SPICE SPK Transfer Format file; this format is consistent with the information listed at the following URL:

https://spsweb.fltops.jpl.nasa.gov

The file name conforms to the standard DSN-generated file name specifications and not the FDF concept as originally noted above. This file has the following conventions.

<File name> <version number>.<file extension>

where	File Name	-	[29 Characters], which includes the field delimiters of either an underscore character (_); the following field definitions are used to define the fields File Qualifier => 13 ASCII characters 3 ASCII Digits (followed by underscore), followed by 9 ASCII characters = 085_baseline for LRO baseline SPICE Transfer SPK Duration => 6 ASCII Digits and Characters = nnnday; where nnn = number of days within the file; followed by the underscore (_) character. Start Date => 8 ASCII Digits/Characters in the form of: YYYYDDD; 7ASCII Digits used to represent the start date associated with the first station acquisition; followed by a 1 character underscore (_) character	
	version number	=	[2 characters] Two ASCII character version number. The initial version is 01, next is 02 up to 99.	
	file extension	=	[3characters] .xsp, for the SPICE transfer format.	
For and	Ear anomale a completile name for the SDICE file (for the 190 day dynation of Thursday)			

For example, a sample file name for the SPICE file (for the 180 day duration of Thursday, January 15, 2009 at 0000Z) would have the following file name convention: 085_baseline_180day_YYYDDD_01.xsp

4-32

This file is only the nominal trajectory and not the plus/minus 3-sigma

Another reference for SPICE SPK data formats is:

http://naif.jpl.nasa.gov/naif

The SPICE ID for LRO is 125 (octal) or -85 (decimal). The SPK file will be type 13 with order of interpolation equal to 3. Since this product is a binary file, no sample product is listed in Appendix B.

4.1.5 (FDF-7) Laser Ranging Site Prediction Data

The laser ranging site prediction data describes the FDF-generated information used by the laser ranging site; it provides detailed information to point the laser accurately to the spacecraft and to put the laser pulses in the LOLA earth range window. This information provides times, position vectors, and other necessary information to allow the laser ranging site to locate the LRO spacecraft and begin the laser ranging functions.

Time interval	Receiver position vector data samples provided at 1 minute increments
File duration	10 days of Laser Site Prediction data starting 0000Z of the current day for normal updates Post-maneuver updates will start at 00:00 GMT on the current day
File or Data Generation Frequency	Daily, by noon-time, Eastern After maneuvers within best-effort available
Delivery method (real-time, SCP, FTP, etc)	FDF delivers product via the FDPC (MOC performs the scp pull) MOC scp pushes to the LOLA SOC; who then forwards the file to the CDDIS repository
Data Volume	Approximately 1.2 MBytes
Accuracy (if it applies)	Data accuracy is within 800 meters over the 84 hour predicts; Across maneuvers (orbit adjust or momentum unloads) accuracy is best available
Other pertinent details	Acquisition data are consistent with the predicted ephemeris data based upon the most recent tracking information. This predictive compares are not applicable across spacecraft maneuvers

4.1.5.1 Product Details

4.1.5.2 Format

The laser ranging site acquisition data format provides the required information for a laser ranging site to be able to perform laser ranging activities to the LRO spacecraft. The LRO Laser Ranging Prediction information is the LRO position vector (in meters) at the signal receive time computed based on a transmission from the geocenter, rotated to the International Terrestrial Reference Frame (ITRF) at the signal transmit time, and timetagged at the signal transmit time. This record is repeated at 1 minute intervals. The format is the Consolidated Laser Prediction Format, Version 1.02. It consists of the following header and data record fields:

4-33

Field name	Field Characteristics	
Header type 1	Many of these fields are standard, such as the record type (H1), CPF, format version, year, month, day, hour of ephemeris production. The ephemeris source will be "FDF". The target name representing LRO is TBD from the laser group, although "LRO" is suggested. The notes field will contain comments.	
Header type 2	Many of these fields are standard, such as IDs. The SIC ID for LRO is "0059". The target type will be "TBD". The other IDs will be assigned at successful separation from the launch vehicle.	
Header type 3	Not supplied.	
Header type 4	Not supplied.	
Header type 5	Not supplied.	
Header type 9	End of header trailer, will be supplied.	
Record type 10-1	Receiver position vector (X, Y, Z) in meters at the signal receive time computed based on a transmission from the geocenter, rotated to the ITRF frame at the signal transmit time, and timetagged at the signal transmit time. This record is repeated at 1 minute intervals for the duration of the ephemeris prediction period.	
Records type 99	Ephemeris trailer record.	

Table 4-3 FDF – Laser Ranging Prediction Data Description

This file does not conform to the FDF-standard file name conventions; it conforms to the CDDIS-identified standard file name concepts.

The following table identifies the convention used for this file:

<Sat-ID>_<File Type>_<Start Date>_<version number>.<file source>

	—	21	_	—
where	Sat-ID	=	=	[3 ASCII Characters], which identifies the spacecraft; default to lro (all lowercase)
	File Type	=	=	File Format => 3 ASCII Characters default to cpf (all lowercase)
	Start Date	=	=	[6 ASCII Digits]; in the form of YYMMDD; where YY = 2 digits of year (08 - 13) MM = 2 digits for the month (01 - 12) DD = 2 digits for the day (01 - 31)
	version number	=	=	[4 ASCII Digits], in the form of nnnv, which identifies the ephemeris version number and the version within a day. nnn = day of year + 500 to distinguish CPFs from TIVs in time bias and other messages. The .500. can be dropped when TIVs are discontinued. This field is three digits with zero leading fill and v = one ASCII digit for version number, the initial version is 1
	file source	=	=	[3characters] .fdf, that indicates that this is an FDF generated file.

A sample file name (for the 10 day duration of Thursday, January 15, 2009 at 0000Z through Sunday, January 25, 2009 at 0000Z) and corresponding for the first generation of this data file is given as lro_cpf_090125_5251.fdf

4-34

A sample Laser Ranging Site Prediction Data file is provided as a reference in Appendix B, Figure B.1-3.

4.1.6 (FDF-8) Space Network Acquisition Data

This product file contains the LRO spacecraft acquisition data for the Space Network's TDRSS support during the launch and early orbit phase prior to ground station contacts.

Time interval	Data samples provided at 1 minute increments
File duration	Approximately 24 hours of data for the launch day
File or Data Generation Frequency	Delivered L-3 days and for any launch delays over 1 day
Delivery method (real-time, SCP, FTP, etc)	FDF delivers product to the WSC TDRSS Scheduling Office
Data Volume	FDF delivers IIRVs as independent vectors and as such, the data volume aspect is NA
Accuracy (if it applies)	best available for launch predict
Other pertinent details	FDF will provide the SN Acquisition Data only for the L&EO mission phase or for pre-launch tests with SN SN support will be less than several hours in duration

4.1.6.1 Product Details

4.1.6.2 Format

The SN acquisition data are formatted as an Improved InterRange Vector (IIRV) file in accordance with the STDN 724.

This product is generated on an as-needed basis to support either the mission tests/rehearsals or for the L&EO mission phase. The product contains approximately 2 hour of acquisition data for the TDRSS contact to support the L&EO mission phase (though it is likely that 24 hours of acquisition data will be sent).

The IIRV character layout is shown for reference in the following table.

Line	Character	Explanation
1		Optional text message.
2	GIIRV	Start of message (fixed).
	А	A Alphabetic character indicating originator of message:
		ASCII space = $GSFC Z = WLP$
		E = ETR L = JPL, W = WTR J = JSC, P = PMR A = CSTC, K = KMR C
		= CNES
	rrrr	rrrr Destination routing indicator. Specifies the site for which the message
		was generated. If for more than one station, this field should contain
		"MANY."
3	V	Vector type:
		1 = Free flight (routine on-orbit), $2 =$ Forced (special orbit update)
		3 = Spare, $4 =$ Maneuver ignition, $5 =$ Maneuver cutoff
	C	6 = Reentry, 7 = Powered flight, 8 = Stationary, 9 = Spare S = Source of data:
	S	1 = Nominal/planning, 2 = Real-time, 3 = Off-line, 4 = Off-line/mean
		NOTE: Nominal/planning sets cannot be sent to White Sands Ground
	1	Terminal (WSGT) from the NCC.
	1	1 Fixed one (1)
	С	C = Coordinate system:
	C C	1 = Geocentric True-of-Date Rotating
		2 = Geocentric mean of 1950.0 (B1950.0).
		3 = Heliocentric B1950.0.
		4 = Reserved for JPL use (non-GSFC).
		5 = Reserved for JPL use (non-GSFC).
		6 = Geocentric mean of 2000.0 (J2000.0).
		7 = Heliocentric J2000.0.
	Sic (4 chars)	sic (4 chars) SIC
	bb	bb Body number/VID (01-99).
	nnn	nnn Counter incremented for each vector in a set of vector data on a per-
		station per-transmission basis.
	doy	doy Day of year (001 = January 1).
	hhmmsssss	hhmmsssss Vector epoch in UTC with resolution to nearest millisecond.
	222	(The implied decimal point is three places from the right).
	ccc	ccc Checksum of the decimal equivalent of the preceding characters on
		Line 3:
		0 through 9 = face value.; Minus $(-) = 1$; ASCII Space = 0.
4	S	s Sign character: ASCII Space = positive or Minus sign = negative
	xxxxxxxxx	xxxxxxxxx = X component of positive of virtual sign integrative
	ууууууууу	yyyyyyyyyy = Y component of position (meters)
	ZZZZZZZZZZ	zzzzzzzzzzz = Z component of position (meters)
	ссс	ccc Checksum of the decimal equivalent of the preceding characters on
		Line 4:
		0 through $9 =$ face value.; Minus (-) = 1; ASCII Space = 0.

Table 4-4 FDF – IIRV TTY SN Acquisition Data Description

4-36

Line	Character	Explanation
5	S	s Sign character (same as above)
	XXXXXXXXX	$xxxxxxxxxxx \cdot = X$ -component of velocity
	ууууууууу	yyyyyyyyyyy ·= Y-component of velocity
	ZZZZZZZZZZ	zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
		NOTE:
		All velocity components are in meters/second with resolution to the nearest millimeter/second. The implied decimal point is three places from the right.
	ссс	
		ccc Checksum of the decimal equivalent of the preceding characters on Line 5:
		0 through $9 =$ face value.; Minus (-) = 1; ASCII Space = 0.
6	mmmmmmmmmm	Mass of spacecraft in kilograms with resolution to 1/10 of a kilogram. The implied decimal point is one place from the right. Contains all zeros when not used.
	ааааа	Average spacecraft cross-sectional area in square meters with resolution to the nearest hundredth of a square meter. The implied decimal point is two places from the right. Contains all zeros when not used.
	kkkk	Dimensionless drag coefficient. The implied decimal point is two places from the right. Contains all zeros when not used.
	S	Sign character for coefficient of solar reflectivity ASCII Space = positive or Minus Sign = negative
	rrrrr	Dimensionless Solar Reflectivity coefficient. The implied decimal point is six places from the right. Contains all zeros when not used.
	ссс	Checksum of the decimal equivalent of the preceding characters on Line 6:
		0 through $9 =$ face value.; Minus (-) = 1; ASCII Space = 0.
7	0000	ITERM End of message (fixed)
		Originator routing indicator

FDF delivers the IIRVs as independent vectors to the Data Services Management Center (DSMC) at White Sands using conventional FDF transmission protocols and not in a file concept; as such, there is no file naming convention to document.

Appendix B, Figure B.1-4 provides a sample IIRV as a reference.

4.1.7 (FDF-9) Ground Station View Period Predicts File

The Ground Station View Period Predict file contains specific data associated with the High Gain antenna and the data associated with the omni antenna.

4-37

FDF uses the different station elevation mask information to identify different station views for the Ka-Band antenna as compared for the S-Band antenna. FDF uses a 20 degree station mask for the Ka-Band and a 5 degree minimum elevation mask for the S-band antenna.

FDF uses a DSN masking of six (6) degrees for a horizon mask. FDF will generate actual station masking files as they receive the masking data from each of the sites.

Time interval	Data samples provided at 1 minute increments
File duration	28 days starting at 0000 Hours on Thursday Post-maneuver updates will start at 00:00 GMT on the current day
File or Data Generation Frequency	Delivered weekly, on Wednesday by noon-time Eastern After maneuvers within best-effort available
Delivery method (real-time, SCP, FTP, etc)	FDF initiates ftp to the WOTIS to transfer file scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull)
Data Volume	Variable; approximately 500 -700 Kbytes based on number of views per station and duration for each station view
Accuracy (if it applies)	The file contents should have accuracy over the 84-hours prediction, of less than 800 m in along-track error.
Other pertinent details	Station elevation masking information is unique for each station Contains both HGA and Omni views for each available station

4.1.7.1 Product Details

4.1.7.2 Format

This file contains the data associated with view periods for all supporting ground stations used to provide LRO with Tracking, Telemetry, & Command (TT&C) support during the various mission phases. It consists of the station identifier and the view period information for that station based on a fixed minimum elevation angle of 5 degrees.

The general format of this file consists of the following information:

1:N Header lines that provide the Station Name and date that FDF generated the file, and header lines that provide the field description; the file then contains N lines of data for each station view period.

The N lines of data contain the following fields:

Start Time Stop Time Duration Start Pass # Max Elev. Degrees Maximum Elevation Time; where these fields are defined in the following table:

Table 4-5 FDF – Ground Station View Period Data Description

Field name	Field Characteristics
Station name	42 – 43 ASCII text characters representing the unique station identifier, with the following format: Facility-NNNN-To-Satellite-0059-Sensor-TTTT; where NNNN = WS1S for LRO White Sands S-band Station WS1K for White Sands Ka-Band Station STSS for SDO backup STSK for the SDO backup Ka-Band USPS for USN Dongara USHS for USN South Point, Hawaii KU1S (or KU2S) for Kiruna, Sweden WU1S (or WU2S) for Wilheim, Germany DS24 for the DSN 34-m at Goldstone, Ca DS27 for the High-Speed Beam Wave Guide site at Goldstone, Ca, D34K for the DSN 34m ta Canberra, Australia D34K for the DSN 34-m at Madrid, Spain DS55 for the High-Efficiency site at Madrid, Spain DS65 for the High-Efficiency site at Madrid, Spain and TTTT can either be referenced as: Omni – for the S-Band Omni View
Start time information: year day of year and time of day	HGA – for the High Gain Antenna S- or Ka-Band View. YYYYDDD.HHMMSS, where YYYY => 4 ASCII digits of year (2008 – 2013) DDD => 3 ASCII digits for day of year (1 – 366), followed by a period (.) HHMMSS => 6 ASCII digits for the hours, minutes, and seconds of day
Stop time information: year day of year and time of day	YYYYDDD.HHMMSS, where YYYY => 4 ASCII digits of year (2008 – 2013) DDD => 3 ASCII digits for day of year (1 – 366), followed by a period (.) HHMMSS => 6 ASCII digits for the hours, minutes, and seconds of day
Station View Duration (in seconds)	SSSSS.mmm (9 ASCII digits), where SSSSS => 5 ASCII characters representing the whole seconds; followed by a period(.) mmm => 3 ASCII characters for the milliseconds of station contact
Pass Number	7 ASCII characters representing a monotonically increasing Orbit Number (1 to 9999999) NOTE: This field is only valid after lunar insertion; this field should be ignored prior to LOI
Max elevation angle	EE.ddd EE => 2 ASCII digits for whole angle measurement (0 – 90) dd => 3 ASCII digits for decimal portion of range (000 – 999)

4-39

Field name	Field Characteristics
Time of Maximum Elevation	YYYYDDD.HHMMSS, where
	YYYY => 4 ASCII digits of year (2008 – 2013)
	DDD => 3 ASCII digits for day of year $(1 - 366)$, followed by a period (.)
	HHMMSS => 6 ASCII digits for the hours, minutes, and seconds of day

There will be certain instances in which the FDF-generated view period product does not contain valid view period information for a specific station because of the orbital geometry. In that event, FDF uses a different format that discussed in Table 4-5. In this event, the FDF-generated information conforms to the following format, as noted in Table 4-6

Table 4-6 FDF – Ground Station No View Period Data Description

Field name	Field Characteristics
Station name	42-43 ASCII text characters representing the unique station identifier, with the
	following format:
	Facility-NNNN-To-Satellite-0059-Sensor-TTTT; where
	NNNN = WS1S for LRO White Sands S-band Station
	WS1K for White Sands Ka-Band Station
	STSS for SDO backup
	STSK for the SDO backup Ka-Band
	USPS for USN Dongara
	USHS for USN South Point, Hawaii
	KU1S (or KU2S) for Kiruna, Sweden
	WU1S (or WU2S) for Wilheim, Germany
	DS24 for the DSN 34-m at Goldstone, Ca
	DS27 for the High-Speed Beam Wave Guide site at Goldstone, Ca,
	DS34 for the DSN-34m at Canberra, Australia
	D34K for the DSN 34m Ka-Band site at Canberra, Australia
	DS45 for the High-Efficiency site at Canberra, Australia
	DS54 for the DSN 34-m at Madrid, Spain
	DS65 for the High- Efficiency site at Madrid, Spain
	and TTTT can either be referenced as:
	Omni – for the S-Band Omni View
	HGA – for the High Gain Antenna S- or Ka-Band View.
No Data Found Descriptor	3 lines (Carriage returns terminate each line); the first 2 lines are blank lines the Third line has 15 ASCII Characters to indicate
	No Access Found

A sample file name for the first generation of the View Period data file is given as FDF9 2009015 2009043 N01.txt.

4-40

A sample Ground Station View Period Predict Data file is provided as a reference in Appendix B, Figure B.1-5. This sample product shows both instances that indicate view period data and no view period data for a station.

4.1.8 (FDF-3) LRO Beta Angle Predict File

The LRO Beta Angle Predict File provides the angle information between the LRO lunar orbit plane and the sun with the following definition. When the sun is in the orbit plane, this results in a zero degree (0°) angle. If the sun and orbit plane are perpendicular to each other; then this results in a beta angle of ninety degrees (90°). In this specific instance, the LRO spacecraft is in continuous full sun.

Time interval	Data samples provided at 6 hour increments
File duration	6 months, starts on the Wednesday at 0000Z Post-maneuver updates will start at 00:00 GMT on the current day
File or Data Generation Frequency	Monthly, on the first Wednesday of the month, by noon-time, Eastern After maneuvers within best-effort available
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull) MOC "scp" push to SOCs
Data Volume	Approx 24 Kbytes
Accuracy (if it applies)	Data accuracy is within 800 meters over the 84 hour predicts; Across maneuvers (orbit adjust or momentum unloads) accuracy is best available. No implied accuracy after the first 28 day predict
Other pertinent details	This product is consistent with the predicted ephemeris data based upon the most recent tracking information This file is generated using a 3-body after a 28 day interval

4.1.8.1 Product Details

FDF will generate this file for all post-LOI mission phases.

4.1.8.2 Format

The LRO Beta Angle Predict file is an ASCII-formatted file in which the fields are space delimited; the number of spaces between each data field is variable. The file contains the time of the sample, the Beta angle information (given in degrees and hundredths of degree) and the sun quadrant information that provides information as to whether the angle is increasing or decreasing. A positive Beta Angle correlates to the spacecraft oriented to a positive orbit normal reference frame. FDF does not guarantee any inherent accuracy for this data product after the first 28 days since it does not model any other maneuvers. FDF performs a numerical integration within the first 28 days of the data product; after the first 28 days of the files, FDF uses a 3-body point mass to model the predictions;

The file contains the time, beta angle, and quadrant information; the following table provides a brief description of each field:

4-41

Field name	Field Characteristics
Time information:	YYYYDDD.HHMMSS. (GMT) 14 total ASCII Characters with a period between
year	the first 7 and last six; where
day of year and	YYYY => 4 ASCII digits of year (2008 – 2013)
time of day	DDD => 3 ASCII digits for day of year $(1 - 366)$
	HHMMSS => 6 ASCII digits (hours, minutes, and seconds of day)
Beta Angle	SBB.bb => (degrees) 6 total ASCII characters with a period between the first 3 and last 2 the first character is a sign value (positive or negative angles) a Blank = Positive Orbit Normal reference
	- = Negative Orbit Normal reference the next 2 are the whole decimal degrees of the beta angle
	last 2 are the decimal portion of the Beta angle
Quadrant	$N \Rightarrow 1$ ASCII character that identifies the quadrant information related to the Beta Angle definition. Allowable values are: $1 - 4$ inclusive

Table 4-7 FDF – LRO Beta Angle Data Description

A sample file name for the first generation of this data file is given as FDF03 2009015 2009195 N01.txt

A sample LRO Beta Angle File data file is provided as a reference in Appendix B, Figure B.1-6.

4.1.9 (FDF-4) LRO Definitive Ephemeris File

The LRO Definitive Ephemeris file contains the LRO spacecraft's position and velocity information in an inertial, mean J2000 coordinate reference frame. The coordinate frame will be Earth-centered for pre-LOI mission phases and moon-centered for post-LOI mission phases.

4.1.9.1 Product Details

Time interval	Data samples provided at 1 minute increments
File duration	Previous 24 hours (day basis) from 0000Z to 0000Z
File or Data Generation Frequency	Delivered daily by noon-time, Eastern
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull)
Data Volume	Approx 1200 Kbytes
Accuracy (if it applies)	Accurate to 500 meters
Other pertinent details	Ephemeris data are consistent with the predicted ephemeris data based upon the most recent tracking information

4.1.9.2 Format

The Definitive Ephemeris file is an ASCII-formatted file in which the fields are space delimited; the number of spaces between each data field is variable. The file contains the time of the sample, the X,Y, Z position information (given in Kilometers, or Km) and the X, Y, and Z

4-42

velocity components (given in Kilometers per second, or Km/sec). The file entries are generated at one minute increments. The following table provides a brief description of each field:

Field name	Field Characteristics
Time information:	YYYYDDD.HHMMSS (GMT), 14 total ASCII Characters with a period between
year	the first 7 and last six; where
day of year and	YYYY => 4 ASCII digits of year (2008 – 2013)
time of day	DDD => 3 ASCII digits for day of year $(1 - 366)$
5	HHMMSS => 6 ASCII digits (hours, minutes, and seconds of day)
X-Position	SRRRRR.rrrrrr (Km) => 14 ASCII characters including the period between the first 6 and last 6
	first signed 6 are the whole portions of the X-component of LRO's position*
	last 6 are the decimal portion of the X-component position
Y-Position	SRRRRR.rrrrrr (Km) => 14 ASCII characters including the period between the
	first 6 and last 6 first gianad 6 are the whole portions of the V component of LPO's position*
	first signed 6 are the whole portions of the Y-component of LRO's position*
	last 6 are the decimal portion of the Y-component position SRRRRR.rrrrr (Km) => 14 ASCII characters including the period between the
Z-Position	first 6 and last 6
	first signed 6 are the whole portions of the Z-component of LRO's position*
	last 6 are the decimal portion of the Z-component position
X-Velocity	SRR.rrrrr (km/sec) => 10 ASCII characters including the period between the first
X velocity	3 and last 6
	first signed 6 are the whole portions of the X-component of the LRO's
	velocity*
	last 6 are the decimal portion of the X-component velocity
X7 X7 1 '/	
Y-Velocity	SRR.rrrrr (km/sec) => 10 ASCII characters including the period between the first 3 and last 6
	first signed 2 are the whole portions of the Y-component of the LRO's
	velocity*
	last 6 are the decimal portion of the Y-component velocity
	last o are the decimal portion of the 1-component velocity
Z-Velocity (Km/s)	SRR.rrrrr (km/sec) => 10 ASCII characters including the period between the first
	3 and last 6
	first signed 2 are the whole portions of the Z-component of the LRO's
	velocity*
	last 6 are the decimal portion of the Z-component velocity
* - Field is actually a floating	ng value so the value will vary significantly over the course of the mission.
	ng value so the value will valy significantly over the course of the IIIISSION.

Table 4-8 FDF – LRO Definitive Ephemeris Data Description

A sample file name for the first generation of this data file is given as FDF04_2009015_2009022_N01.txt

A sample LRO Definitive Ephemeris File data file is provided as a reference in Appendix B, Figure B.1-7.

4-43

4.1.10 (FDF-29) LRO Definitive SPICE SPK File

This file contains the SPICE "kernel" information for the definitive LRO spacecraft ephemeris data. This kernel file contains the definitive LRO spacecraft position and velocity information for the previous day based only on the received S-Band tracking data. This product will be Earth-centered J2000 and Moon-centered J2000 following LOI (or as needed).

4.1.10.1 Product Details

Time interval	Data samples provided at 1 minute increments
File duration	Previous 24 hours (day basis) from 0000Z to 0000Z
File or Data Generation Frequency	Delivered daily by noon-time, Eastern
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull) MOC "scp" push to SOCs
Data Volume	Approx .08 Mbytes
Accuracy (if it applies)	Accurate to less than 500 meters
Other pertinent details	Pre-LOI product is Earth-centered J2000 Post LOI product is Moon-centered J2000

4.1.10.2 Format

The Definitive Spice file is a binary SPICE file and will require the use of the SPICE Toolkit, which can be accessed from the Navigation and Ancillary Information Facility (NAIF) web site. This web site is located at the following URL: <u>http://naif.jpl.nasa.gov/naif/index.html</u>

For example, a sample file name for the first generation of this data file for the previous day of January 8, 2009 is fdf29_2009008_2009009_n01.bsp (binary SPICE format).

The SPICE ID for LRO will be -85, as assigned by JPL.

The SPK file will be type 13 and interpolation order 11; since this is a binary file, no sample product is provided in Appendix B.

4.1.11 (FDF-30) LRO Predictive SPICE SPK File

This file contains the SPICE "kernel" information for the predictive LRO spacecraft ephemeris data. This kernel file contains the LRO spacecraft positions and velocity information based upon the processed tracking data. This file will contain the LRO Predictive ephemeris data; FDF can model any upcoming LRO station keeping maneuvers that are to occur in within this 28 day time period.

4.1.11.1 Product Details

Time interval	Data samples provided at 1 minute increments
File duration	Contains 28 days starting on 0000Z of the current day for nominal deliveries Pre-LOI phase only contains a time span for pre-LOI (approx 4-5 days) Post-LOI phase contains the remainder of the 28 day duration Post-maneuver updates will start at 00:00 GMT on the current day
File or Data Generation Frequency	Daily, by noon-time, Eastern After maneuvers within best-effort available
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull) MOC "scp" push to SOCs
Data Volume	Approx 2 Mbytes
Accuracy (if it applies)	Over the 84-hours prediction, of less than 800 m in along-track error. Across maneuvers (orbit adjust or momentum unloads) accuracy is best available
Other pertinent details	The SPICE ID for LRO is -85, as assigned by JPL. The SPK file will be type 13 and interpolation order 11;

4.1.11.2 Format

This product will be Earth-centered J2000 and Moon-centered J2000 following LOI (or as needed). The Predictive Spice file is a binary SPICE file and will require the use of the SPICE Toolkit, which can be accessed from the Navigation and Ancillary Information Facility (NAIF) web site. This web site is located at the following URL: <u>http://naif.jpl.nasa.gov/naif/index.html</u>

The SPICE ID for LRO is 125 (octal) or -85 (decimal). The SPK file will be type 13 with order of interpolation equal to 3.

A sample file name for the first generation of this data file is given as FDF30_2009015_2009043_N01.bsp for a binary file.

Since this is a binary formatted file, no sample product will be shown in Appendix B.

4.1.12 (FDF-13) Lunar Orbit Ascending and Descending Node Predicts

This file contains the lunar-nodal crossing predicts associated when the LRO orbit either crosses the ascending node or the descending node.

4.1.12.1 Product Details

Time interval	Data samples provided at 1 minute increments
File duration	Next 7 days starting at 0000Z of the current day Post-maneuver updates will start at 00:00 GMT on the current day
File or Data Generation Frequency	Daily, by noon-time, Eastern After maneuvers within best-effort available
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull) MOC "scp" push to SOCs
Data Volume	Approximately 9 KBytes
Accuracy (if it applies)	Data accuracy is within 800 meters over the 84 hour predicts; Across maneuvers (orbit adjust or momentum unloads) accuracy is best available
Other pertinent details	Only created for post-LOI mission phases

4.1.12.2 Format

This is a file that contains 1-week's worth of nodal crossing predicts. The file is an ASCII text file in which the fields are separated by standard white space characters. The file contains 1:n lines of file header information followed by the nodal crossing time, the nodal crossing type, and the corresponding lunar longitude, and the orbit number; these fields are separated by tabs. The following table provides a brief description of each field:

Table 4-9 FDF – LRO Ascending Descending Node Data Description

Field name	Field Characteristics
timetag information: year day of year and time of day	YYYYDDD.HHMMSS (GMT), where YYYY => 4 ASCII digits of year (2008 – 2013) DDD => 3 ASCII digits for day of year (1 – 366) preceding a period HHMMSS => 6 ASCII digits representing hours, minutes and seconds of day
Node Crossing Type	1 Character ASCII flag to indicate if the type of nodal crossing A => Ascending Node Crossing Type D => Descending Node Crossing Type
Lunar Longitude	AAA.dd (degrees, East Longitude) AAA => 3 ASCII digits for whole angle measurement $(0 - 360)$ dd => 2 ASCII digits for decimal portion of longitude angle $(00 - 99)$ The lunar longitude is consistent with the DE421 coordinate system
Lunar Orbit	5 ASCII Characters to represent a monotonically increasing orbit number from 1 99999. Orbit number increments at ascending node crossing beginning at lunar insertion
	NOTE1: The orbit number is only provided at the Ascending Node Crossing time

4-46

Field name	Field Characteristics
Lighting Condition	 3-5 ASCII Characters that identify the lighting conditions, such as = Day - LRO is in a daylight (sun lit) condition = Night - LRO is in a nighttime (not sun lit) condition

A sample file name for the first generation of this data file is given as FDF13_2009015_2009022_N01.txt

FDF will generate this product on a daily basis or after a maneuver has occurred. The product will contain 7 days of data.

A sample LRO Ascending Descending Node data product is provided as a reference in Appendix B, Figure B.1-8.

4.1.13 (FDF-14) Lunar Orbit Terminator Crossing Predicts

This is a file that contains lunar terminator crossing predicts associated when the LRO spacecraft crosses the lunar terminator line.

Time interval	Data samples provided at 1 minute increments
File duration	Next 7 days starting at 0000Z of the current day Post-maneuver updates will start at 00:00 GMT on the current day
File or Data Generation Frequency	Daily, by noon-time, Eastern After maneuvers within best-effort available
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull) MOC "scp" push to SOCs
Data Volume	Approximately 7 KBytes
Accuracy (if it applies)	Data accuracy is within 800 meters over the 84 hour predicts; Across maneuvers (orbit adjust or momentum unloads) accuracy is best available
Other pertinent details	Only created for post-LOI mission phases

4.1.13.1 Product Details

4.1.13.2 Format

This is a file that contains 1-week's worth of lunar terminator crossing predicts. The file is an ASCII text file in which the fields are separated by standard white space characters. The file contains the actual terminator crossing time and the corresponding terminator type; the following table provides a brief description of each data field:

Field name	Field Characteristics
time information: year day of year and time of day	YYYYDDD.HHMMSS (GMT), whereYYYY => 4 ASCII digits of year (2008 – 2013)DDD => 3 ASCII digits for day of year (1 – 366) preceding a periodHHMMSS => 6 ASCII digits representing hours, minutes and seconds of day
Lunar Terminator Type	 1 Character ASCII flag to indicate if the type of terminator crossing N => Into Lunar night (going from Lunar day into night) D => Into Lunar day (going from Lunar night into day)

A sample file name for the first generation of this data file is given as FDF14 2009015 2009022 N01.txt.

FDF will generate this product on a daily basis or after a maneuver has occurred. The product will contain 7 days of data.

A sample LRO Lunar Terminator Crossing data product is provided as a reference in Appendix B, Figure B.1-9.

4.1.14 (FDF-15) Mission Eclipse Predicts

This file contains the predictive information associated when the LRO spacecraft is put into a shadow resulting from either a lunar or Earth caused eclipse.

4.1.14.1 Product Details

Time interval	Data samples provided at 1 minute increments
File duration	Next 90 days starting at 0000Z on the Wednesday delivery day Post-maneuver updates will start at 00:00 GMT on the current day
File or Data Generation Frequency	Weekly on Wednesday, by noon-time, Eastern After maneuvers within best-effort available
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull) MOC "scp" push to SOCs
Data Volume	Approximately 470 KBytes
Accuracy (if it applies)	Data accuracy is within 800 meters over the 84 hour predicts; Across maneuvers (orbit adjust or momentum unloads) accuracy is best available
Other pertinent details	3-body propagation after 28 days

4.1.14.2 Format

FDF generates this file as an ASCII-formatted file in which the fields are separated by standard white space characters. The format for this file can consist of 1:N lines that identify the mission eclipses that result in both a partial eclipse (LRO is flying in the penumbra shadow) and a full eclipse (LRO is flying in the umbra shadow). The umbra is always a subset of the penumbra phase and as such the start/stop times and durations will be contained within the penumbra. The

4-48

usual configuration is that a penumbra is followed immediately by an umbra then a penumbra as LRO enters, transits, and exits the eclipse. The file has the following field information: Start Time, Stop Time, Shadow Flag, Duration, and Occultation Flag, and Total Duration; these fields are defined in the following table:

Field name	Field Characteristics				
Start time information:	YYYYDDD.HHMMSS (GMT) where				
year	YYYY => 4 ASCII digits of year (2008 – 2013)				
day of year and	DDD => 3 ASCII digits for day of year $(1 - 366)$ preceding period.				
time of day	HHMMSS => 6 ASCII digits representing hours, minutes, and seconds of day				
Stop time information:	YYYYDDD.HHMMSS (GMT) where				
year	YYYY => 4 ASCII digits of year (2008 – 2013)				
day of year and	DDD => 3 ASCII digits for day of year $(1 - 366)$ preceding period.				
time of day	HHMMSS => 6 ASCII digits representing hours, minutes, and seconds of day				
Current Condition	Penumbra or Umbra				
Duration of Current Condition	SSSSS.MM (seconds)				
	SSSSS => 5 ASCII digits for whole portion of seconds $(0 - 99999)$				
	$MM \Rightarrow 2 ASCII digits for decimal portion of seconds (00 - 99)$				
Occultation	Occulting Body				
	Earth or Moon				
Total Duration	Total duration of penumbra and umbra on current orbit (seconds)				
	SSSSS.MM				
	SSSSS => 5 ASCII digits for whole portion of seconds $(0 - 99999)$				
	MM => 2 ASCII digits for decimal portion of seconds $(00 - 99)$				

 Table 4-11 FDF – LRO Mission Eclipse Data Description

A sample file name for the first generation of this data file is given as FDF15_2009015_2009104_N01.txt.

A sample LRO Mission Eclipse data product is provided as a reference in Appendix B, Figure B.1-10.

4.1.15 (FDF-16) Lunar Ephemeris

This file contains the Lunar Ephemeris, which is used to update the on-board attitude/orbit flight software tables used by the Attitude Control System (ACS) FSW.

4.1.15.1 Product Details

Time interval	Data samples provided at 10 minute increments
File duration	Next 10 days beginning the current day
File or Data Generation Frequency	Daily, by noon-time, Eastern
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull)
Data Volume	Approximately 177 KBytes
Accuracy (if it applies)	Lunar position data are accurate to 100 meters.
Other pertinent details	The lunar ephemeris vectors will be in the Earth Centered Inertial (ECI) reference frame for all mission phases

4.1.15.2 Format

The format for this file is an ASCII Formatted file in which the fields are separated by standard white space characters. The file contains multiple lines that provide the ephemeris information for the moon's position and velocity. The file consists of the following field: Time, X- Position, Y- Position, Z- Position, X-Velocity, Y- Velocity, and Z- Velocity; where the fields are defined in the following table

Field name	Field Characteristics			
Time information:	YYYYDDD.HHMMSS (GMT), 14 total ASCII Characters with a period between			
year	the first 7 and last six; where			
day of year and	YYYY => 4 ASCII digits of year (2008 – 2013)			
time of day	DDD => 3 ASCII digits for day of year $(1 - 366)$			
	HHMMSS => 6 ASCII digits (hours, minutes, and seconds of day)			
X-Position	SRRRRR.rrrrr (Km) => 14 ASCII characters including the period between the			
	first 6 and last 6			
	Sign plus the first 6 are the whole portions of the X-component of moon's			
	position*			
	last 6 are the decimal portion of the X-component position			
Y-Position	SRRRRR.rrrrr (Km) => 14 ASCII characters including the period between the			
	first 6 and last 6			
	Sign plus the first 6 are the whole portions of the X-component of moon's			
	position*			
	last 6 are the decimal portion of the Y-component position			
Z-Position	SRRRRR.rrrrr (Km) => 14 ASCII characters including the period between the			
	first 6 and last 6			
	Sign plus the first 6 are the whole portions of the X-component of moon's			
	position*			
	last 6 are the decimal portion of the Z-component position			

Table 4-12 FDF – Lunar Ephemeris Data Description

4-50

Field name	Field Characteristics				
X-Velocity	SRR.rrrrr (km/sec) => 10 ASCII characters including the period between the first				
	3 and last 6				
	first signed 6 are the whole portions of the X-component of the LRO's				
	velocity*				
	last 6 are the decimal portion of the X-component velocity				
Y-Velocity	SRR.rrrrr (km/sec) => 10 ASCII characters including the period between the first				
	3 and last 6				
	first signed 2 are the whole portions of the Y-component of the LRO's				
	velocity*				
	last 6 are the decimal portion of the Y-component velocity				
Z-Velocity (Km/s)	SRR.rrrrr (km/sec) => 10 ASCII characters including the period between the first				
	3 and last 6				
	first signed 2 are the whole portions of the Z-component of the LRO's				
	velocity*				
	last 6 are the decimal portion of the Z-component velocity				
* - Field is actually a floating	g value so the value will vary significantly over the course of the mission.				

A sample file name for the first generation of this data file is given as FDF16_2009015_2009024_N01.txt.

A sample of the Lunar Ephemeris data product is provided as a reference in Appendix B, Figure B.1-11.

4.1.16 (FDF-23) Orbiter State Vector Table

The LRO State Vector Table provides the predicted set of OD state information for the LRO spacecraft for the upcoming referenced time period, nominally 1-weeks of predicted OD state information. These data are used by the on-board computer to update its attitude flight SW system.

Time interval	Data samples provided at 10 minute increments
File duration	Next 10 days starting the current day Post-maneuver updates will start at 00:00 GMT on the current day
File or Data Generation Frequency	Daily, by noon-time, Eastern After maneuvers within best-effort available
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull)
Data Volume	Approximately 177 KBytes
Accuracy (if it applies)	Data accuracy is within 800 meters over the 84 hour predicts; Across maneuvers (orbit adjust or momentum unloads) accuracy is best available
Other pertinent details	The product must be Earth Centered Inertial for all mission phases

4.1.16.1 Product Details

4.1.16.2 Format

The file is an ASCII formatted file that provides the State Vector data file in which the fields are space delimited; the number of spaces between each data field is variable. The table is a multi-line file that contains both meta-data and state vector data. The meta-data corresponds to when the report was generated, the start and stop times and other information related to the state vector generation. The file contains a reference time, and x-, y-, and z-position data and the corresponding x-, y-, and z-velocity data. The LRO position information is given in Kilometers (or Km), the LRO velocity components given in Kilometers per second, or Km/sec). The file entries are time centered every 10 minutes. The following table provides a brief description of each field:

YYYYDDD.HHMMSS (GMT) where YYYY => 4 ASCII digits of year (2008 – 2013)					
YYYY => 4 ASCII digits of year (2008 – 2013)					
YYYY => 4 ASCII digits of year (2008 - 2013)					
DDD => 3 ASCII digits for day of year $(1 - 366)$ preceding period.					
HHMMSS => 6 ASCII digits representing hours, minutes, and seconds of day					
SRRRRR.rrrrr (km) => 14 ASCII characters including the period first signed 6 are the whole number of X-position vector information (0- 999999) *					
last 6 are the degree decimal of the X-position (000000- 999999)					
SRRRRR.rrrrr (km) => 14 ASCII characters including the period first signed 6 are the whole degrees of Y-position vector information (0- 999999)*					
last 6 are the degree decimal of the Y-position (000000- 999999)					
SRRRRR.rrrrr (km) => 14 ASCII characters including the period first signed 6 are the whole degrees of Z-position vector information (0- 999999)* last 6 are the degree decimal of the Z-Position (000000- 999999)					
SRRRRR.rrrrr (km/sec) => 10 ASCII characters including the period between the first 6 and last 6 first signed 6 are the whole portions of the X-component of the LRO's velocity*					
last 6 are the decimal portion of the X-component velocity					
SRRRRR.rrrrr (km/sec) => 10 ASCII characters including the period between the first 6 and last 3 first signed 6 are the whole portions of the Y-component of the LRO's velocity* last 6 are the decimal portion of the Y-component velocity					
SRRRRR.rrrrrr (km/sec) => 10 ASCII characters including the period between					
the first 6 and last 3 first signed 6 are the whole portions of the Z-component of the LRO's velocity* last 6 are the decimal portion of the Z-component velocity					

Table 4-13 FDF – LRO State Vector Table Data Description

4-52

A sample file name for the first generation of this data file is given as FDF23_2009015_2009024_N01.txt

A sample LRO State Vector Table is provided as a reference in Appendix B, Figure B.1-19.

4.1.17 (FDF-17) Orbiter Thruster Maneuver Plans

This file contains the data information for the upcoming LRO maneuver related to the required start thruster firing time, the thruster sequence, initial attitude, stop thruster firing time. This MOC uses this file to create the commands that are uploaded to the spacecraft that identify the proposed maneuver configuration – duration, thruster setup, start/stop times, just to name some of the data required to define the LRO maneuver.

Time interval	NA
File duration	NA; covers the time interval associated with the set of planned maneuvers
File or Data Generation Frequency	Varies based on type of maneuver; data generation frequency is listed in the FDF-GS&O Operations Agreement (451-MOA-002960)
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull)
Data Volume	Approximately 5 Kbyte
Accuracy (if it applies)	The data accuracy is best-estimated since this is a predicted maneuver plan
Other pertinent details	Product is only applicable for upcoming maneuver

4.1.17.1 Product Details

4.1.17.2 Format

This product consists of one file detailing the parameters required to characterize any LRO thruster maneuver..

The file is a multi-line ASCII file that provides the maneuver metadata, which includes the file creation time and the start and stop of the maneuver, the anticipated pre- and post-burn fuel used and spacecraft mass, the planned delta-V, duration, and planned fuel mass, and the maneuver configuration. The header data also contains other file references, such as the Orbiter Ephemeris and thruster plan data files, that the FD maneuver team used to create this Maneuver Plan.

The following figure provides an example of the fields within this "header area":

4-53

Maneuver Plan				
Plan Date (UTCG): 2008 141 15:31:2 Maneuver: SK01b Planned dV (m/s): 6.699			Pre-burn fuel mass (kg): Post-burn fuel mass (kg): Fuel mass used (kg): Average SC Mass (kg):	267.343 official 263.505 estimated 3.838 estimated 1270.050 estimated
Notes: LRO Ephemeris File Name: Thrust Vector File Name:	MOC SIM09 SK01b Plan:	ning		
	nk 1 NT OFF CS OFF	2 OFF Off-Pulsed	Prop Mode: PressureReg ACS Stop Mode: dV	

Figure 4-1 FDF Maneuver Plan Header Concept

The file then provides 15 lines for each of the planned initial thruster data and the planned final thruster data. Because this is the maneuver plan, the repeating group associated with the initial thruster data and the final thruster data have the identical values for the records.

The following figure provides the details related to the initial thruster configuration and expected performance.

				Calculated	Calculated	Thrust	Effective	Duty
E	Bank	Press (Pa)	Temp (degC)	Isp (sec)	Thrust (N)	Efficiency	Thrust (N)	Cycle (%)
NT1	1	1861584.5	25.0					
NT2	2	1861584.5	25.0					
NT3	1	1861584.5	25.0					
NT4	2	1861584.5	25.0					
AT1	1	1861584.5	25.0					
AT2	2	1861584.5	25.0	231.441	13.409	1.000000	13.409	58.600
AT3	1	1861584.5	25.0					
AT4	2	1861584.5	25.0	231.441	18.787	1.000000	18.787	82.100
AT5	1	1861584.5	25.0					
AT6	2	1861584.5	25.0	238.702	25.307	1.000000	25.307	100.000
AT7	1	1861584.5	25.0					
AT8	2	1861584.5	25.0	231.441	16.270	1.000000	16.270	71.100

Figure 4-2 FDF Maneuver Plan Initial Thruster Data Concept

The same 15 lines are repeated to identify the final thruster data. As note above, since this is the "planned" maneuver data, the initial and final data records and values are identical.

Final	Thrust	er Data:						
				Calculated	Calculated	Thrust	Effective	Duty
	Bank	Press (Pa)	Temp (degC)	Isp (sec)	Thrust (N)	Efficiency	Thrust (N)	Cycle (%)
NT1	1	1861584.5	25.0	-		-		-
NT2	2	1861584.5	25.0					
NT3	1	1861584.5	25.0					
NT4	2	1861584.5	25.0					
AT1	1	1861584.5	25.0					
AT2	2	1861584.5	25.0	231.441	13.409	1.000000	13.409	58.600
AT3	1	1861584.5	25.0					
AT4	2	1861584.5	25.0	231.441	18.787	1.000000	18.787	82.100
AT5	1	1861584.5	25.0					
AT6	2	1861584.5	25.0	238.702	25.307	1.000000	25.307	100.000
AT7	1	1861584.5	25.0					
AT8	2	1861584.5	25.0	231.441	16.270	1.000000	16.270	71.100

Figure 4-3 FDF Maneuver Plan Final Thruster Data Concept

Each group of data consists of these entries, as defined by the following table:

Field name	Field Characteristics
Thruster Bank Data	4 ASCII Characters/Digits (separated by blanks) in the form of NT1 1 or NT2 2 ATn 1 or ATn 2; where n = 1 through 8 inclusive
Bank Data	1 ASCII Digits to identify which thruster bank is used for this maneuver; values are either 1 or 2
Pressure (Pa)	13 ASCII Digits in the form of: PPPP.pppppppp, which corresponds to the whole and decimal portion for the tank pressure
Temperature (C)	11 ASCII Digits in the form of: TT.ttttttt, which corresponds to the whole and decimal portion for the tank temperature
Calculated ISP (sec)	12 ASCII Digits in the form of: NNN.nnnnnn, which corresponds to the whole and decimal portion for the maneuver thruster impulse
Calculated Thrust (N)	10-11 ASCII Digits in the form of: NN.nnnnnn, which corresponds to the whole and decimal portion for the thrust for each thruster bank
Thrust Efficiency (unitless)	10 ASCII Digits in the form of:N.nnnnnn, which corresponds to the whole and decimal portion for the thrust foreach thruster bank (100 percent = 1.0000000
Effective Thrust (N)	10-11 ASCII Digits in the form of:NN.nnnnnnn, which corresponds to the whole and decimal portion for the thrustfor each thruster bankFor this product, both the calculated thrust and the effective thrust are equal sincethis is the anticipated results of the maneuver
Duty Cycle (%)	10-12 ASCII Digits in the form of: NNN.nnnnnn, which corresponds to the whole and decimal portion for the duty cycle required by each thruster (max value is 100.0000000)

This file does not conform to the FDF-standard file name conventions. The following table identifies the convention used for this file:

- <File Name Qualifier>_<Maneuver Type>_<Start Date>_<Stop Date>_<version number>.<file extension>
- where File Name = [5 Characters], for file designator character followed by underscore Qualifier (_) character; e.g., FDF17_

4-55

Maneuver Type =	 [4-5 Characters] for the type of planned maneuver in the form of MCCn – Mid-course correction maneuver #n or LOIn – Lunar Orbit Insertion maneuver #n MOIn – Mission Orbit Insertion maneuver #n SKnna – Station keeping maneuver #nn [either "a" or "b" as each station keeping maneuver will consist of 2 parts], for example SK01a, SK01b,
	Additionally, the "n" for the MCC, LOI, MOI can have the suffix of "E" to represent that this is an engineering pre-burn to test the thrusters prior to the official maneuver
Start Date =	[8 characters] Eight ASCII digit for the start date in the form of YYYYDDD; where YYYY = 4 ASCII Digits for start year DDD = 3 ASCII Digits for start day of year; followed by the underscore (_) character
Stop Date =	[8 characters] Eight ASCII digit for the stop date in the form of YYYYDDD; where YYYY = 4 ASCII Digits for stop year DDD = 3 ASCII Digits for stop day of year; followed by the underscore (_) character
version number =	[2 characters] Two ASCII digits for version number. The initial version is 01, next is 02 up to 99; followed by the period (.)
file extension or = source	[3characters] .txt, that indicates that this is a textual file that FDF generated.

A sample file name for the first generation of the Orbiter Thruster Maneuver Plan file that corresponds to the first Lunar Orbit Insertion maneuver is given as FDF17_LOI1_2008307_2008308_01.txt

A sample of the Orbiter Thruster Maneuver Plan product is provided as a reference in Appendix B, Figure B.1-12.

4.1.18 (FDF-19) Orbiter Post Maneuver Report

This file contains the data generated to show a comparison of the predicted and actual performance and provides a calculation of the fuel used and an estimate of the remaining fuel available. FDF generates this report after the completion of each thruster maneuver.

This report provides a reconstruction at how well the spacecraft executed the maneuver. However, FDF may not have all available/required tracking data needed to create orbit solutions or have all of the available maneuver-related telemetry when FDF creates this report.

4-56

4.1.18.1 Product Details

Time interval	NA
File duration	NA
File or Data Generation Frequency	At the completion of each identified thruster maneuver within best available time; data generation frequency is listed in the FDF-GS&O Operations Agreement (451-MOA-002960)
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull) MOC scp pushes the file to the LOLA SOC
Data Volume	Approximately 5 Kbyte
Accuracy (if it applies)	The data accuracy is best-estimated since this maneuver plan report may be generated without the complete set of required products or the most up-to-date products
Other pertinent details	Product is only applicable after maneuvers

4.1.18.2 Format

The report is an ASCII formatted file in which the fields are space delimited; the number of spaces between each data field is variable. The report provides the thruster profile and compares the planned versus actual thruster information, the fuel used and the remaining on-board fuel, and the estimated and actual spacecraft mass following the thruster maneuver.

This file contains the exact same information as defined for the FDF-17 (Thruster Maneuver Plan) as listed in 4.1.17.2. However, for this data product, the report provides the actual spacecraft and thruster data associated with the completion of the maneuver as well as the original, planned maneuver spacecraft and thruster maneuver data.

Since the data format is identical to the FDF-17 product, the format is not repeated.

This file does not conform to the FDF-standard file name conventions. The following table identifies the convention used for this file:

<File Name Qualifier>_<Maneuver Type>_<Start Date>_<Stop Date>_<version number>.<file extension>

where	File Name	=	[5 Characters], for file designator character followed by underscore
	Qualifier		(_) character; e.g., FDF19_

Maneuver Type =	 [4-5 Characters] for the type of planned maneuver in the form of MCCn – Mid-course correction maneuver #n LOIn – Lunar Orbit Insertion maneuver #n MOIn – Mission Orbit Insertion maneuver #n SKnna – Station keeping maneuver #nn [either "a" or "b" as each station keeping maneuver will consist of 2 parts], for example SK01a, SK01b,
	Additionally, the "n" for the MCC, LOI, MOI can have the suffix of "E" to represent that this is an engineering pre-burn to test the thrusters prior to the official maneuver
Start Date =	[8 characters] Eight ASCII digit for the start date in the form of YYYYDDD; where YYYY = 4 ASCII Digits for start year DDD = 3 ASCII Digits for start day of year; followed by the underscore (_) character
Stop Date =	[8 characters] Eight ASCII digit for the stop date in the form of YYYYDDD; where YYYY = 4 ASCII Digits for stop year DDD = 3 ASCII Digits for stop day of year; followed by the underscore (_) character
version number =	[2 characters] Two ASCII digits for version number. The initial version is 01, next is 02 up to 99; followed by the period (.)
file extension or = source	[3characters] .txt, that indicates that this is a textual file that FDF generated.

A sample file name for the first generation of the Orbiter Post-Maneuver Report file that corresponds to a Lunar Orbit Insertion maneuver is given as FDF19_LOI1_2008307_2008308_01.txt

A sample of the Orbiter Post Maneuver Report product is provided as a reference in Appendix B, Figure B.1-13.

4.1.19 (FDF-18) Post Separation Report

This report provides a comparison of the launch separation vector that the launch vehicle support team reports against the launch separation vector that FDF calculates based on the updated launch information.

The report compares the time-slipped nominal separation vector (or if available the FDFdetermined separation vector from inertial guidance telemetry or radar data) versus the EELVvendor supplied actual separation vector.

4-58

4.1.19.1 Product Details

Time interval	NA
File duration	NA
File or Data Generation Frequency	Best effort immediately following the launch vehicle separation With nominal (within 3 sigma separation), report is created within 1 hour
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull)
Data Volume	Approximately 1 KBytes
Accuracy (if it applies)	The accuracy will be to the best available from the data
Other pertinent details	Product is only applicable after Orbiter separation from launch vehicle

4.1.19.2 Format

The report is an ASCII formatted file in which the fields are space delimited; the number of spaces between each data field is variable. The report fields provide the comparison between the reported launch vehicle separation vector and the FDF-calculated launch vehicle separation vector (updated to reflect the actual launch epoch). The report is a multi-line file, which contains the two original vectors (and their magnitudes) and then the position and velocity magnitudes of the differences. This information is identified in the following table:

Report Section	Data Fields
Section 1	Epoch and Vectors of Actual Separation StateX (km)Y (km)Z (km)DX (km/sec)SMA (km)ECCINC (deg)RAAN (deg)AP (deg)TA (deg)
Section 2	Epoch and Vectors of Nominal Separation StateX (km)Y (km)Z (km)DX (km/sec)SMA (km)ECCINC (deg)RAAN (deg)AP (deg)TA (deg)
Section 3	Comparison fields Date/Time Range 1 (km) Range 2 (km) Radial (km) Cross-track (km) Along-Track (km) Total Delta-R (km) True Anomaly (deg)
Section 4	Summary of Comparisons Minimum Position Differences by Component and Total Maximum Position Differences by Component and Total Minimum Velocity Differences by Component and Total Maximum Velocity Differences by Component and Total Position RMS by Component and Total Velocity RMS by Component and Total

Table 4-14 FDF – LRO Post Separation Report Data Description Information

A sample file name for the first generation of this data file (for a launch date of 28 October 2008) is given as FDF18_2008302_2008302_B01.txt

A sample of the Post Separation Report product is provided as a reference in Appendix B, Figure B.1-15.

4.1.20 (FDF-20) Predicted LRO Ephemeris File

This file contains predictive LRO ephemeris data for the spacecraft position and velocity information centered at one minute increments. The file is generated in an inertial, mean Earth-Centered J2000 coordinate reference frame. This file is only used internally by the MOC-AGS element

4.1.20.1 Product Details

Time interval	Data samples provided at 1 minute increments
File duration	Next 10 days starting on the current day Post-maneuver updates will start at 00:00 GMT on the current day
File or Data Generation Frequency	Daily, by noon-time, Eastern After maneuvers within best-effort available
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull)
Data Volume	Approx 1.7 Mbytes

4-60

Accuracy (if it applies)	accuracy over the 84-hours prediction, of less than 800 m in along-track error. Across maneuvers (orbit adjust or momentum unloads) accuracy is best available
Other pertinent details	Product is always Earth-centered J2000 and only used by AGS element

4.1.20.2 Format

The Predictive LRO Ephemeris file is an ASCII-formatted file in which the fields are space delimited; the number of spaces between each data field is variable. The file contains the time of the sample, the X,Y, Z position information (given in Kilometers, or Km) and the X, Y, and Z velocity components (given in Kilometers per second, or Km/sec). The file entries are generated at five minute increments. The following table provides a brief description of each field:

Table 4-15 FDF – LRO Predictive Ephemeris Data Description Information

Field name	Field Characteristics
time information:	YYYYDDD.HHMMSS (GMT) where
year	YYYY => 4 ASCII digits of year (2008 – 2013)
day of year and	DDD => 3 ASCII digits for day of year $(1 - 366)$ preceding period.
time of day	HHMMSS => 6 ASCII digits representing hours, minutes, and seconds of day
X-Position	SRRRRR.rrrrrr (km) => 14 ASCII characters including the period Signed first 6 whole portions of the X-component of LRO's position* last 6 are the decimal portion of the X-component position
Y-Position	SRRRRRR.rrrrr (km) => 14 ASCII characters including the period Signed first 6 are the whole portions of the Y-component of the LRO's position*
	last 6 are the decimal portion of the Y-component position
Z-Position	SRRRRR.rrrrr (km) => 14 ASCII characters including the period
	Signed first 6 are the whole portions of the Z-component of the LRO's position*
	last 6 are the decimal portion of the Z-component position
X-Velocity	SRRRRRR.rrrrr (km/sec) => 14 ASCII characters including the period Signed first 6 are the whole portions of the X-component of the LRO's velocity*
	last 6 are the decimal portion of the X-component velocity
Y-Velocity	SRRRRRR.rrrrr (km/sec) => 14 ASCII characters including the period Signed first 6 are the whole portions of the Y-component of the LRO's velocity *
	last 3 are the decimal portion of the Y-component velocity
Z-Velocity	SRRRRR.rrrrr (km/sec) => 14 ASCII characters including the period Signed first 6 are the whole portions of the Z-component of the LRO's velocity*
* - Signed whole number is	

4-61

A sample file name for the first generation of this data file is given as FDF20_2009015_2009022_N01.txt

A sample Predictive LRO Ephemeris File data file is provided as a reference in Appendix B, Figure B.1-16.

4.1.21 (FDF-21) Predicted Lunar Ground Track File

This file contains the predictive LRO ground track against the lunar surface. The Predicted Lunar Ground Track provided this information in the principal axis (PA) reference frame.

4.1.21.1 Product Details

Time interval	Data samples provided at 1 minute increments
File duration	Next 7 days starting on the current day Post-maneuver updates will start at 00:00 GMT on the current day
File or Data Generation Frequency	Daily, by noon-time, Eastern After maneuvers within best-effort available
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull) MOC "scp" push to SOCs
Data Volume	Approx 887 Kbytes
Accuracy (if it applies)	Data accuracy is within 800 meters over the 84 hour predicts; Across maneuvers (orbit adjust or momentum unloads) accuracy is best available
Other pertinent details	Generated for post-LOI mission phases only

4.1.21.2 Format

The Predictive Lunar Ground Track file is an ASCII-formatted file in which the fields are separated by spaces. The file contains the time of the sample, the lunar Longitude and Latitude position, the LRO altitude, and ground track velocity every 60 seconds. The longitude and latitude information is based on the DE421 reference frame. The LRO altitude is given in Kilometers (Km), the LRO ground track velocity magnitude given in Kilometers per second, (Km/sec). The file entries are generated at one minute increments. The following table provides a brief description of each field:

Field name	Field Characteristics
Time information: year day of year and time of day	YYYYDDD.HHMMSS (GMT) where YYYY => 4 ASCII digits of year (2008 – 2013) DDD => 3 ASCII digits for day of year (1 – 366) preceding period. HHMMSS => 6 ASCII digits representing hours, minutes, and seconds of day
Lunar Longitude	RRR.rrr (degrees) => 7 ASCII characters including the period between the first 3 and last 3 first 3 are the whole degrees of Longitude East (0- 360) last 3 are the degree decimal of Longitude (000- 999)
Lunar Latitude	SRR.rrr (degrees) => 6 ASCII characters including the period between the first 3and last 3first character is the sign (blank = Northern Lats; - = Southern Lats)next 2 are the whole degrees of Latitude (0- 90)last 3 are the degree decimal of Latitude (000- 999)
LRO Altitude	RRR.rrr (km) => 7 ASCII characters including the period between the first 3 and last 3 first 3 are the whole portions of the LRO's altitude in floating point (expected values for LRO are 000 – 999 km) last 3 are the decimal portion of the LRO's altitude (in hundredths of Km, 000 – 999)
Ground Track-Velocity Magnitude	SRRRRR.rrr (km/sec) => 10 ASCII characters including the period between the first 6 and last 3 first 6 are the whole portions of the X-component of the LRO's velocity (floating point value, expected value for LRO is single digit) last 3 are the decimal portion of the X-component velocity

Table 4-16 FDF – LRO Predicted Ephemeris Data Description Information

A sample file name for the first generation of this data file is given as FDF21_2009015_2009022_N01.txt

A sample LRO Predictive Lunar Ground Track File is provided as a reference in Appendix B, Figure B.1-17.

4.1.22 (FDF-22) Definitive Lunar Ground Track File

This file contains the definitive LRO ground track against the lunar surface based on the most recent definitive ephemeris. The Definitive Lunar Ground Track file provides this information in the PA reference frame.

4.1.22.1 Product Details

Time interval	Data samples provided at 1 minute increments
File duration	Previous 24 hours 0000Z previous day to 0000Z current day
File or Data Generation Frequency	Daily, by noon-time, Eastern After maneuvers within best-effort available
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull) MOC "scp" push to SOCs
Data Volume	Approx 127 Kbytes
Accuracy (if it applies)	Data accuracy is within 500 meters over the def product timespan
Other pertinent details	Generated for post-LOI mission phases only

4.1.22.2 Format

The Definitive Lunar Ground Track file is an ASCII-formatted file in which the fields are separated by standard white space characters. The file contains the time of the sample, the lunar Longitude and Latitude position, the LRO altitude, and ground track velocity every 60 seconds. The longitude and latitude information is based on the DE421 reference frame. The LRO altitude is given in Kilometers (Km), the LRO ground track velocity magnitude given in Kilometers per second, (Km/sec). The file entries are generated at one minute increments. The following table provides a brief description of each field:

 Table 4-17 FDF – LRO Definitive Lunar Ground Track Description Information

Field name	Field Characteristics
time information: year day of year and time of day	YYYYDDD.HHMMSS (GMT) where YYYY => 4 ASCII digits of year (2008 – 2013) DDD => 3 ASCII digits for day of year (1 – 366) preceding period. HHMMSS => 6 ASCII digits representing hours, minutes, and seconds of day
Lunar Longitude	RRR.rrr (degrees) => 7 ASCII characters including the period between the first 3 and last 3 first 3 are the whole degrees of Longitude East (0- 360) last 3 are the degree decimal of Longitude (000- 999)
Lunar Latitude	SRR.rrr (degrees) => 7 ASCII characters including the period between the first 3and last 3first character is the sign (blank = Northern Lats; - = Southern Lats)next 2 are the whole degrees of Latitude (0-90)last 3 are the degree decimal of Latitude (000-999)

LRO Altitude	RRR.rrr (km) => 7 ASCII characters including the period between the first 3 and last 3 first 3 are the whole portions of the LRO's altitude in floating point (in Km, 000 – 999) last 3 are the decimal portion of the LRO's altitude (in hundredths of Km, 000 – 999)
Ground Track Velocity Magnitude	SRRRRR.rrr (km/sec) => 11 ASCII characters including the period between the first 6 and last 3 first signed 6 are the whole portions of the X-component of the LRO's velocity in floating point (value will typically be 1.6) last 3 are the decimal portion of the X-component velocity

A sample file name for the first generation of this data file is given as FDF22_2009014_2009015_N01.txt

A sample Definitive Lunar Ground Track File is provided as a reference in Appendix B, Figure B.1-18.

4.1.23 (FDF-25) Thruster Calibration Data

This is a report that includes updated parameters for the thruster calibration based on all available information received about past maneuvers. This is an informational report that provides the Post-Maneuver Calibration. It provides the final assessment of how well the maneuver was executed and it uses best pre-maneuver and post-maneuver orbit solutions, and telemetry (pressures, duty cycles, & attitude) to determine a thrust scale factor that can be used to plan future maneuvers (as long as they use the same thruster set NT x AT).

Time interval	NA
File duration	NA
File or Data Generation Frequency	At the completion of each identified thruster maneuver; data generation frequency is listed in the FDF-GS&O Operations Agreement (451-MOA-002960)
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull)
Data Volume	Approximately 5 Kbyte
Accuracy (if it applies)	NA
Other pertinent details	NA

4.1.23.1 Product Details

4.1.23.2 Format

This file contains identical types of information as defined for the FDF-17 (Thruster Maneuver Plan) and the FDF-19 (Orbiter Post Maneuver Report) and follows the similar format as noted for those products. The format and content are listed in Section 4.1.17.2.

However, for this data product, the report provides the actual spacecraft and thruster data associated with the completion of the maneuver as well as the original, planned maneuver spacecraft and thruster maneuver data. Since the data format is identical to the FDF-17 product, the format is not repeated.

This file does not conform to the FDF-standard file name conventions. The following table identifies the convention used for this file:

4-66

<f< th=""><th>ile Name Qua number>.<f< th=""><th></th><th>er>_<maneuver type="">_<start date="">_<stop date="">_<version extension></version </stop></start></maneuver></th></f<></th></f<>	ile Name Qua number>. <f< th=""><th></th><th>er>_<maneuver type="">_<start date="">_<stop date="">_<version extension></version </stop></start></maneuver></th></f<>		er>_ <maneuver type="">_<start date="">_<stop date="">_<version extension></version </stop></start></maneuver>
where	File Name Qualifier	=	[5 Characters], for file designator character followed by underscore (_) character; e.g., FDF25_
	Maneuver Type	=	 [4-5 Characters] for the type of planned maneuver in the form of MCCn – Mid-course correction maneuver #n LOIn – Lunar Orbit Insertion maneuver #n MOIn – Mission Orbit Insertion maneuver #n SKnna – Station keeping maneuver #nn [either "a" or "b" as each station keeping maneuver will consist of 2 parts], for example SK01a, SK01b,
			Additionally, the "n" for the MCC, LOI, MOI can have the suffix of "E" to represent that this is an engineering pre-burn to test the thrusters prior to the official maneuver
	Start Date	=	[8 characters] Eight ASCII digit for the start date in the form of YYYYDDD; where YYYY = 4 ASCII Digits for start year DDD = 3 ASCII Digits for start day of year; followed by the underscore (_) character
	Stop Date	=	[8 characters] Eight ASCII digit for the stop date in the form of YYYYDDD; where YYYY = 4 ASCII Digits for stop year DDD = 3 ASCII Digits for stop day of year; followed by the underscore (_) character
	version number	=	[2 characters] Two ASCII digits for version number. The initial version is 01, next is 02 up to 99; followed by the period (.)
	file extension or source	=	[3characters] .txt, that indicates that this is a textual file that FDF generated.

A sample file name for the first generation of the Thruster Calibration Data file that corresponds to the first Mission Orbit Insertion maneuver is given as FDF25_MOI1_2009015_2009016_01.txt

A sample Thruster Calibration Data File is provided as a reference in Appendix B, Figure B.1-20

4.1.24 (FDF-36) FDF Reprocessed SPICE Definitive Ephemeris Data SPK

The FDF Reprocessed SPICE Definitive ephemeris data SPK file provides the LRO ephemeris based upon a DE421 reference frame. FDF creates this product using the LRO OD reprocessing

4-67

results which will include both laser tracking measurements and LOLA OD and Improved gravity model products.

This reprocessed SPICE transfer format SPK file is based upon both S-band and laser tracking. Since FDF generates a 55-hour solution arcs for the LRO orbit determination (with 7-hr overlap periods), ephemeris data will be generated in 48-hr non-contiguous segments. This product will only be generated in post-processing using the laser data, not for day-to-day navigation support of the mission. The MOC sends this product to the NAIF/PDS for permanent archival.

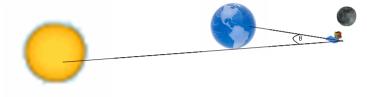
This product is based on a Moon-centered J2000 based on the ME reference frame.

4.1.24.1 Product Details

Time interval	Data samples provided at 1 minute increments
File duration	Weekly files
File or Data Generation Frequency	Generated twice during the mission after it receives the LOLA Improved Gravity Model, which occurs twice during the mission. FDF generates the files approximately 2 months after receipt of the LOLA Improved Gravity Model
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull) MOC "scp" push to SOCs
Data Volume	Approximately .5 MBytes
Accuracy (if it applies)	Data accuracy is within 500 meters over the definitive product timespan
Other pertinent details	Only generated for post-LOI mission phases

4.1.24.2 Format

The FDF Reprocessed SPICE Definitive SPK file is a binary formatted file generated by the SPICE Toolset. The SPICE ID for LRO is -85, as assigned by JPL. The format of this file is consistent with the other FDF-generated SPK files for ephemeris data.


A sample file name for the first generation of this data file is given as fdf36_2009015_2009022_n01.bsp for a binary file. The product will include all definitive portions of the mission since LOI. SPK file will be type 13 and interpolation order 11; since this is a binary formatted file, no sample product will be shown in Appendix B.

4.1.25 (FDF-37) FDF Solar Conjunction File

The Solar conjunction File contains the periods whenever the sun, Orbiter and earth align such that the sun will cause radio frequency interference. In these instances, there will be solar Radio Frequency interference (RFI) that affects the scheduled station contact. The following table provides a quick reference to the Solar Conjunction Type and the corresponding geometry. Figure 4-1 provides the geometry for the two solar conjunction types.

SC Type	Affected Communication	Geometry
Type 1	Uplink	Sun position "inline with the earth to Orbiter vector" Reported when angle between facility and SUN is less than 3° (three degrees)
Туре 2	Downlink	Sun position "inline with the orbiter to earth vector" Reported when angle between LRO and SUN is less than facility defined angle for each station

Solar Conjunction – Type 1 (Uplink RFI)

Solar Conjunction - Type 2 (Downlink RFI)

Figure 4-4 Solar Conjunction Geometry Examples

The solar conjunction predictions will contain all upcoming conjunctions on both the uplink and the downlink within the product span. For many of the deliveries, no solar conjunctions may be present during the product span. If there are no times of solar conjunction, the file will only contain the initial file header information (date generation information and header line).

4.1.25.1 Product Details

Time interval	Data samples provided at 1 minute increments	
File duration	next 28 days starting at 0000Z on the current generation day Post-maneuver updates will start at 00:00 GMT on the current day	
File or Data Generation Frequency	Weekly, on Wednesday, by noon-time, Eastern After maneuvers within best-effort available	
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull)	
Data Volume	Approx 10 Kbytes; variable based on whether there are any Solar Conjunctions for the requested time period	
Accuracy (if it applies)	Data accuracy is within 800 meters over the 84 hour predicts; Across maneuvers (orbit adjust or momentum unloads) accuracy is best available	
Other pertinent details	Only generated for post-LOI mission phases if there are no periods of solar RFI, the file only contains the base header information for each station	

4.1.25.2 Format

The solar Conjunction File is an ASCII text formatted file in which the fields are separated by a variable number of blanks. The solar conjunction file will contain the start time, stop time and a flag to indicate what type of solar conjunction (e.g., Type 1 or Type 2 as an example). The file contains 3-4 lines of header details that identify the file generation information and the file contents. There are 3-4 more lines that provide the format details for the following data fields. After these lines, the file consists of 1:N lines of solar conjunction information.

The following table provides a description of the fields within the file.

Field name	Field Characteristics
Station name	4 ASCII text characters representing the unique station identifier, with the following format: NNNN ; where NNNN = WS1S for LRO White Sands S-band Station WS1K for White Sands Ka-Band Station STSS for SDO backup STSK for the SDO backup Ka-Band USPS for USN Dongara USHS for USN South Point, Hawaii KU1S (or KU2S) for Kiruna, Sweden WU1S (or WU2S) for Wilheim, Germany DS24 for the DSN 34-m at Goldstone, Ca DS34 for the DSN-34m at Canberra, Australia D34K for the DSN 34-m at Madrid, Spain DS54 for the DSN 34-m at Madrid, Spain
Start Time information: year day of year and time of day	YYYYDDD.HHMMSS (GMT), 14 total ASCII Characters with a period between the first 7 and last six; where YYYY => 4 ASCII digits of year (2008 – 2013) DDD => 3 ASCII digits for day of year (1 – 366) HHMMSS => 6 ASCII digits (hours, minutes, and seconds of day)
Stop Time information: year day of year and time of day	YYYYDDD.HHMMSS (GMT), 14 total ASCII Characters with a period between the first 7 and last six; where YYYY => 4 ASCII digits of year (2008 – 2013) DDD => 3 ASCII digits for day of year (1 – 366) HHMMSS => 6 ASCII digits (hours, minutes, and seconds of day)
Duration (seconds)	[9 ASCII Digits] SSSSS.mmm; separated by the period (.) character SSSSS = 5 ASCII digits for whole number of seconds in the duration mmm = 3 ASCII digits for the millisecond portion of the duration
Solar Interference	[6 or 8] ASCII Characters; where6 ASCII Characters identified with Uplink or8 ASCII Characters identified with Downlink
Solar Conjunct Type	1 ASCII Digit n; where n = 1 or 2 depending on the solar conjunction geometry 1 = Uplink, 2 = Downlink

Table 4-18 FDF – Solar Conjunction Data Description

A sample file name for the first generation of this data file is given as FDF37_2009015_2009043_N01.txt

A sample of the Solar Conjunction product is provided as a reference in Appendix B, Figure B.1-21.

4-71

4.1.26 (FDF-38) Target Thruster Vector File

The Target Thruster Vector File includes the specified thrust vector data for the upcoming maneuver. FDF generates the Target Thruster Vector File in support of creating an attitude slew plan used during LRO maneuver execution

4.1.26.1 Product Details

Time interval	NA
File duration	Only applicable for the upcoming maneuver
File or Data Generation Frequency	Varies based on type of maneuver; data generation frequency is listed in the FDF-GS&O Operations Agreement (451-MOA-002960)
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull)
Data Volume	Variable based on maneuver support; can be up to approximately 330 Kbytes
Accuracy (if it applies)	NA
Other pertinent details	NA

4.1.26.2 Format

The Target Thruster Vector File is an ASCII formatted file that provides the direction of the spacecraft Body-X axis (essentially the thrust axis) during the maneuver. The report is a multiline file containing the four columns of space-delimited data. The first column has time in the format of YYYDOY.HHMMSS. The next 3 columns provide the LRO Body axis vector in Earth-centered, J2000 coordinates; the second column provides J2000 X component of the Body X-axis vector, the third column is the J2000 Y component of the Body X-axis vector, the fourth column is the J2000 Z component of the Body X-axis vector.

This file does not contain any header information; the data are listed at whole second intervals. The following table provides the field designations.

Field name	Field Characteristics
Time	14 ASCII Characters/Digits in the form of:
	YYYYDOY.HHMMSS; where YYYY = 4 ASCII Digits for the year designation for the data DOY = 3 ASCII Digits for the day of year designator HHMMSS = 6 ASCII digits for the hours, minutes seconds for the data NOTE: The YYYDOY and HHMMSS are separated by the period (.) character
LRO Body-X axis vector in Earth-centered, J2000	12 ASCII digits and characters to represent the Signed unit vector; in the form of: (s)0.nnnnnnn; where:
coordinates (X component of the Body X- axis vector)	(s) = 1 ASCII character; either a blank (represents a positive value or -, which indicates a negative value 0.nnnnnnnn = 11 ASCII Digits and characters; 1 digit before the decimal place and 9 digits after the decimal place
LRO Body-X axis vector in Earth-centered, J2000	12 ASCII digits and characters to represent the Signed unit vector; in the form of: (s)0.nnnnnnn; where:
coordinates (Y component of the Body X- axis vector)	(s) = 1 ASCII character; either a blank (represents a positive value or -, which indicates a negative value
	0.nnnnnnnn = 11 ASCII Digits and characters; 1 digit before the decimal place and 9 digits after the decimal place
LRO Body-X axis vector in Earth-centered, J2000 coordinates (Z component of the Body X- axis vector)	12 ASCII digits and characters to represent the Signed unit vector; in the form of: (s)0.nnnnnnnn; where:
	(s) = 1 ASCII character; either a blank (represents a positive value or -, which indicates a negative value
	0.nnnnnnnn = 11 ASCII Digits and characters; 1 digit before the decimal place and 9 digits after the decimal place

This file does not conform to the FDF-standard file name conventions. The following table identifies the convention used for this file:

<File Name Qualifier>_<Maneuver Type>_<Start Date>_<Stop Date>_<version number>.<file extension>

where	File Name	=	[5 Characters], for file designator character followed by underscore
	Qualifier		(_) character; e.g., FDF38_

4-73

Maneuver Type =	 [4-5 Characters] for the type of planned maneuver in the form of MCCn – Mid-course correction maneuver #n or LOIn – Lunar Orbit Insertion maneuver #n MOIn – Mission Orbit Insertion maneuver #n SKnna – Station keeping maneuver #nn [either "a" or "b" as each station keeping maneuver will consist of 2 parts], for example SK01a, SK01b,
	Additionally, the "n" for the MCC, LOI, MOI can have the suffix of "E" to represent that this is an engineering pre-burn to test the thrusters prior to the official maneuver
Start Date =	[8 characters] Eight ASCII digit for the start date in the form of YYYYDDD; where YYYY = 4 ASCII Digits for start year DDD = 3 ASCII Digits for start day of year; followed by the underscore (_) character
Stop Date =	[8 characters] Eight ASCII digit for the stop date in the form of YYYYDDD; where YYYY = 4 ASCII Digits for stop year DDD = 3 ASCII Digits for stop day of year; followed by the underscore (_) character
version number =	[2 characters] Two ASCII digits for version number. The initial version is 01, next is 02 up to 99; followed by the period (.)
file extension or = source	[3characters] .txt, that indicates that this is a textual file that FDF generated.

A sample file name for the first generation of this data file is given as FDF38 LOIE 2008333 2008334_01.txt

A sample Target Thruster Vector File is provided as a reference in Appendix B, Figure B.1-22.

4.1.27 (FDF-39) Laser Ranging Site View Period Predicts

The Laser Ranging Site View Period Predict file contains specific view periods for the various laser ranging sites that will support the LRO mission. FDF uses a standard laser-ranging station elevation mask of 10 degrees, to identify the different laser ranging station view periods.

4.1.27.1 Product Details

Time interval	Data samples provided at 1 minute increments
File duration	28 days starting at 0000 Hours on current generation day (Wednesday) Post-maneuver updates will start at 00:00 GMT on the current day
File or Data Generation Frequency	Delivered weekly, on Wednesday by noon-time Eastern After maneuvers within best-effort available
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull)) LRO MOC scp pushes the file to the LOLA SOC, which then scp-pushes the data product to the CDDIS for eventual use in laser ranging support
Data Volume	Approximately 100 Kbytes
Accuracy (if it applies)	The file contents should have accuracy over the 84-hours prediction, of less than 800 m in along-track Across maneuvers (orbit adjust or momentum unloads) accuracy is best available
Other pertinent details	Station elevation masking information is unique for each station Contains HGA views for each available laser ranging site

4.1.27.2 Format

This file contains the data associated with view periods for all supporting laser ranging ground sites that support the LRO mission. The general format of this file consists of the following information:

1:N Header lines that provide the Station Name and date that FDF generated the file, and header lines that provide the field description; the file then contains N lines of data for each station view period.

The N lines of data contain the following fields:

Start Time Stop Time Duration Start Pass # Max Elev. Degrees Maximum Elevation Time; where these fields are defined in the following table:

Field name	Field Characteristics
Station name	43 ASCII text characters representing the unique station identifier, with the following format: Facility-NNNN-To-Satellite-0059-Sensor-HGA; where
	NNNN = GO1L, SLR2000 at Greenbelt, MD (previously GGAO) MDOL, McDonald Observatory at Ft. Davis, TX MONL, Monument Peak, California MATM, Matera Laser Ranging Observatory, Matera, Italy ZIML, Zimmerwald, Switzerland STL3, Mount Stromlo at Canberra, Australia HERL, Herstmonceaux, England GRSM, Grasse, France WETL, Wettzel, Germany HARL, Hartebeesthoek, South Africa (MOBLAS-6) YARL, Yarragadee, Dongara, Australia (MOBLAS-5) KOGC, Koganei, Tokyo, Japan
Start time information: year day of year and time of day	YYYYDDD.HHMMSS, where YYYY => 4 ASCII digits of year (2008 – 2013) DDD => 3 ASCII digits for day of year (1 – 366), followed by a period (.) HHMMSS => 6 ASCII digits for the hours, minutes, and seconds of day
Stop time information: year day of year and time of day	YYYYDDD.HHMMSS, where YYYY => 4 ASCII digits of year (2008 – 2013) DDD => 3 ASCII digits for day of year (1 – 366), followed by a period (.) HHMMSS => 6 ASCII digits for the hours, minutes, and seconds of day
Station View Duration (in seconds)	SSSSS.mmm (9 ASCII digits), where SSSSS => 5 ASCII characters representing the whole seconds; followed by a period(.) mmm => 3 ASCII characters for the milliseconds of station contact
Pass Number	7 ASCII characters representing a monotonically increasing Orbit Number (1 to 9999999)NOTE: This field is only valid after lunar insertion; this field should be ignored prior to LOI
Max elevation angle	EE.ddd EE => 2 ASCII digits for whole angle measurement (0 – 90) dd d=> 3 ASCII digits for decimal portion of elevation angle (000 – 999)
Time of Maximum Elevation	YYYYDDD.HHMMSS, where YYYY => 4 ASCII digits of year (2008 – 2013) DDD => 3 ASCII digits for day of year (1 – 366), followed by a period (.) HHMMSS => 6 ASCII digits for the hours, minutes, and seconds of day

This file follows the standard FDF file naming convention; a sample file name for the first generation of the laser Ranging View Period data file is given as FDF39_2009015_2009043_N01.txt.

A sample Laser Ranging View Period Predict Data file is provided as a reference in Appendix B, Figure B.1-23.

4.1.28 (FDF-40) Definitive Goddard Trajectory Determination System (GTDS) Ephemeris File

This file contains definitive GTDS-formatted LRO ephemeris data for the spacecraft position and velocity information earth-centered data. FDF generates this file for the MOC/AGS use only; no other systems should use this data file.

4.1.28.1 Product Details

Time interval	Data samples provided at 1 minute increments
File duration	Continually appended until predefined limit reached (at approximately 200 Mbytes for file size)
File or Data Generation Frequency	Daily, by noon-time
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull)
Data Volume	Not to exceed 200 Mbytes
Accuracy (if it applies)	accuracy is approximately 500 m RSS total
Other pertinent details	Data format is consistent with Code 500 GTDS format

4.1.28.2 Format

The Definitive LRO GTDS Ephemeris file is an EBCDIC/binary formatted file that is consistent with the standard Code 500 formatted ephemeris data files; the file is identified as a big-Endian format. The FDF Product Guide provides the file data contents and format; therefore this document will not redefine these parameters.

FDF continually concatenates data onto the end of this file and it will continue to grow in file size. When the file reaches to approximately 200 MByte file size limit, FDF create a new file that contains a 2-3 day overlap and starts adding data to the file.

This file does not conform to the FDF-standard file name conventions. The following table identifies the convention used for this file:

<File Name Qualifier>_<Start Date>_<version number>.<file extension>

where File Name = [5 Characters], for file designator character followed by underscore Qualifier (_) character; e.g., FDF40_

4-77

Start Date	=	[8 characters] Eight ASCII digit for the start date in the form of YYYYDDD; where YYYY = 4 ASCII Digits for start year DDD = 3 ASCII Digits for start day of year; followed by the underscore (_) character
version number	=	[2 characters] Two ASCII digits for version number. The initial version is 01, next is 02 up to 99, followed by the period (.)
file extension or source	=	[3characters] .txt, that indicates that this is a textual file that FDF generated.

A sample file name for the first generation of the Definitive GTDS data file is given as FDF40 2008320 01.bin

Since this file contains data in a binary/EBCDIC form, there is no sample product listed in Appendix B.

4.1.29 (FDF-42) FDF Time Coefficient File

The FDF Time coefficient file contains the lunar/planetary coefficients and time coefficients; such as the leap-seconds; time offsets between UTC and UT1 reference times and polar motion data (x, and y positional data) updates.

Time interval	One entry for each day
File duration	File is updated on a daily basis and could contains up to approximately 20 years of data from both a historical (time) and predicted (polar motion) contains up to the limit of the data span
File or Data Generation Frequency	Daily; by noon-time
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull)
Data Volume	Approx 1 MByte
Accuracy (if it applies)	Data are accurate based on the retrieved data from United States Naval Observatory (USNO)
Other pertinent details	NA

4.1.29.1 Product Details

4.1.29.2 Format

The data format for this file is a binary data file. The data consists of the predicted polar motion and historical time offsets. This file following the standard file name conventions as listed previous with the minor exception that the maneuver flag is removed from the file name since this file never implies or has any maneuver concepts involved with the internal data.

4-78

For example, the first file version generated on January 25, 2009 is:

FDF42_2009025_00.bin; since this file is a binary formatted file, no sample product is listed in Appendix B.

4.1.30 (FDF-44) Trajectory Insertion Data

FDF provides the trajectory insertion data as a file to the MOC for inclusion with orbital elements that the MOC eventually transfers back to the United Launch Alliance (ULA)

4.1.30.1 Product Details

Time interval	data are time stamped at the separation epoch
File duration	NA; file is generated once post-launch
File or Data Generation Frequency	FDF generates product once within 3-4 days of launch
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull)
Data Volume	Approx 100 bytes
Accuracy (if it applies)	accuracy is 500 m RSS total
Other pertinent details	NA

4.1.30.2 Format

FDF provides the derived instantaneous trajectory insertion data as specified in the following table; these data will represent the most accurate orbit data available for an epoch propagated back to LRO separation and prior to any LRO impulsive maneuver. The FD generated file contains 2-3 lines of header information that identifies the file creation meta-data information; each of the header lines are preceded with the hash (#) symbol in the first column to denote a comment line. The file then contains the following data lines for the True equinox of date and the Orbital parameters as defined by the Keplerian orbital information as defined within this table.

Field name	Field Characteristics
Date of launch vehicle separation)	8 ASCII digits that represent the True equinox of date; with the following format: MMDDYYYY =
Time of launch vehicle separation	6 ASCII digits that represent the True equinox of date; with the following format HHMMSS
Semi-major Axis (Km)	Floating point value, format: nnnnnnnnnnnnn
Eccentricity (Unitless)	Floating point value; format 0.nnnnnnnnn
Inclination (Degrees)	Floating point value: format: nnn.nnnnn; not zero padded
Right Ascension of Ascending Node (Degrees)	Floating point value: format: nnn.nnnnn; not zero padded
Argument of perigee (Degrees)	Floating point value: format: nnn.nnnnn; not zero padded
True Anomaly (Degrees)	Floating point value: format: nnn.nnnnn; not zero padded

Table 4-20 FDF – Trajectory Insertion Data Description

The file following the standard FDF-generated file name convention previous listed with the exception that the file name does not require any maneuver flag as part of the file name. A sample file name is identified as:

FDF44_2008302_2008302_00.txt. Appendix B, Figure B.1-24 provides a sample of the file content.

4.1.31 (FDF-45) LRO Operations Activity Request

This is the LRO Operations Activity Request, which FDF can use to identify routine requests of standard activities, such as commands, guidance, navigation, and control procedure activation, ground support, or any other features that FDF and the LRO MOC have identified as possible routine operations that have been thoroughly checked and validated during the spacecraft integrations and test phase.

FDF generates the LRO Operations Activity Request and forwards the inputs to the LRO MOC. The MOT merges any this Activity Requests with command input for the spacecraft and orbiter health and safety commands and any specific maneuver commands based on mission profile support phases.

If the activity requests contains any commands, the commands in the file must be defined in the LRO Telemetry and Command Handbook – Database (431-HDBK-000053). If the command contains submnemonics, they must be specified with the command.

4-80

4.1.31.1 Product Details

Time interval	NA
File duration	NA
File or Data Generation Frequency	File delivered 48 hours prior to the requested activity, assuming the activity currently exists. Otherwise best effort based on time required to generate new procedures or test new instrument commands. Additional time required if FDF delivers via backup protocol
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC via the FD Communications Server; the backup uses the FDPC (MOC performs the scp pull)
Data Volume	Variable; based on contents, but nominally less that 1KBytes
Accuracy (if it applies)	NA
Other pertinent details	NOTE: The time interval will be relaxed if the request is based on an Orbiter anomaly

4.1.31.2 Format

The Activity Request File is intended to capture all information necessary to execute the activity described. All fields identified are required, if a field is not required enter "NA", this includes the initial submission of an activity request number field. The following sections describe each field. A linefeed character terminates each field and a blank line should separate each field. The following table identifies the file contents and provides additional information on the data entered for each field

Table 4-21 LRO Operations Activity Request Definitions

Field name	Field Characteristics
OAR Request Date	Date when the requestor submitted the OAR to the MOC; in yyyy-mm-dd format; where yyyy = 4 digit year designation (2008 - 2013) mm = 2 digit month designator (01 - 12), with leading zeros dd = 2 digit day of month designator (01 - 31) with leading zeros The OAR requestor is required to enter this field .
OAR Approved Date	 Date when the MOT approves the OAR to the MOC; in yyyy-mm-dd format; where yyyy = 4 digit year designation (2008 – 2013) mm = 2 digit month designator (01 – 12), with leading zeros dd = 2 digit day of month designator (01 -32) with leading zeros The OAR requestor should enter NA for this field.

4-81

Field name	Field Characteristics
OAR Planned Execution Date	This field will contain the MOT identified expected date when the OAR is expected to execute; in yyyy-mm-dd format; where yyyy = 4 digit year designation ($2008 - 2013$) mm = 2 digit month designator ($01 - 12$), with leading zeros dd = 2 digit day of month designator ($01 - 32$) with leading zeros The OAR requestor should enter NA for this field.
OAR Status	This field contains the indication as to whether the MOT has accepted/rejected the OAR; the MOT completes this field The OAR requestor should enter NA for this field.
OAR Status Detail	This field contains the explanation if the MOT "rejects" OAR; otherwise, the MOT enters an NA The OAR requestor should enter NA for this field.
OAR Name	This field contains the name of the activity that the SOC is requesting. The field is a short description of the activity. When possible, this field should identify an existing LRO Flight Procedure Document. The OAR requestor is required to enter this field .
OAR Number	This field is intended for tracking purposes. The MOT assigns the OAR number when received. The MOT will assign numbers for both approved and unapproved OARs. The OAR requestor should enter NA for this field.
OAR Requested By	Name of person making the request. The LRO Operations Agreement with each organization will identify the individuals, a primary and backup. The MOT will only act on requests submitted by those individuals identified in the approved LRO Operations Agreement The OAR requestor is required to enter this field.
OAR Requestor Phone Number	The OAR Requestor must provide a telephone number in this field. As the MOT reviews and implements the request, the MOT will contact the requestor at the telephone number provided to answer any questions regarding the request. The OAR requestor is required to enter this field.
OAR Requestor Email Address	The Requestor must provide an email address in this field. The MOT will send an email to this address and all email addresses on record for this requesting organization, which verifies MOT receipt of the OAR. The MOT will send another email when the OAR is approved or rejected The OAR requestor is required to enter this field.
OAR Request Org	The Requesting organization indicates the affiliation of the person requesting the change The OAR requestor is required to enter this field.

Field name	Field Characteristics							
OAR Type	The activity type field gives an indication to the MOT as to which area is affected by the request. One of the following types: GROUND OPERATION – activity will affect only ground assets; e.g., requesting the MOT to generate a specific product INSTRUMENT OPERATION – activity will affect the instrument; e.g., sending a command, updating a FSW Table, downlinking a specific memory location SPACECRAFT OPERATION – activity will affect the spacecraft; e.g., sending specific commands, updating C&DH flight software or changing a table onboard the spacecraftThe OAR requestor is required to enter this field. NOTE: FDF-generated OARs should NEVER use INSTRUMENT OPERATION as a type							
OAR Execution Window	 This field identifies the window for when the FDF requests execution of the requested activity. The OAR requestor can supply one of the following valid inputs: NA NET yyyy-mm-dd; NLT yyyy-mm-dd where yyyy = 4 digit year designation (2008 – 2013) mm = 2 digit month designator (01 – 12), with leading zeros dd = 2 digit day of month designator (01 - 31) with leading zeros NOTE: The MOT will schedule the request at the next available opportunity if the requestor enters an 'NA' in this field. 							
OAR Constraints	 1:N lines of free form text describing constraints for executing activity, e.g. Only during eclipse The activity constraints field identifies to the MOT limitations on when the activity may be executed. In most instances, flight procedure documents will identify constraints related to the operation. If additional constraints are required, they should be included in this field. The OAR requestor can either supply NA or enter a valid constraint data into this field. 							
OAR Sequence	This field specifies the activity to be executed. The MOT will execute the activity according to the instructions provided. Instructions can be as simple as execute Flight Procedure XYZ at next available ground station contact. When the Flight Procedure already exists and is approved for operational use, the MOT will execute the procedure at the time specified. When it is necessary to execute the activity at a specific time, the Requestor should identify absolute times in the format of YYYY-DOY-HH:MM:SS for each step in the activity where applicable. All absolute times in this field shall be represented in Coordinated Universal Time (UTC). The OAR requestor is required to enter this field .							

A sample LRO Operations Activity Request is provided in Appendix B, Figure B.3-1.

The following file-naming convention is used for the OAR files transmitted between FDF and the LRO MOC. The filename consists of up to 22 characters; it also contains a three -character file

4-83

extension name. There is an underscore (_) between the first four fields and a period (.) between the last two fields. The form of the filename is as follows:

<FILENAMEDESIGNATOR>_YYYY_DOY_NN.<file extension>

where	File name designator	=	[10 ASCII characters]; defaults to LROFDF_OAR for FDF Ops Activity request
	Date	=	YYYY_DOY; where YYYY = 4ASCII digits for year DOY – 3 ASCII digits for day or year NOTE: Date field identifies when FDF generated request
	Version	=	NN; where nn= 2 ASCII Digits to reflect the version number within a day; first version = 01; this allows for multiple files in the same day
	file extension	=	[3 characters] Standard file extension for all text input files txt to indicate that the file is text information

A sample FDF-generated LRO Activity Request file name is: LROFDF_OAR_YYYY_DOY_NN.txt.

4.2 STATION PRODUCTS AND DESCRIPTIONS

The following sections provide the details on the interface products generated by the various ground stations used to support the LRO mission. The following several products are derived by or created by various groups that fall under the general category of the Space Communications Network. They provide specific information required by the LRO mission and are used either in support of the Mission Operations Center or by various entities within the LRO mission.

DSN is used for early mission launch critical supports activities and for any mission maneuver; DSN provides regularly scheduled proficiency supports. Outside of these supports, DSN is used solely to provide an emergency, or contingency, supports in the event that the commercial S-band stations are down.

The Space Network (SN) Tracking and Data Relay Satellites (TDRS) system supports the LRO mission; its support is limited for the several hours immediately after launch.

The following sections identify the interfaces sent by the LRO MOC to the various ground stations supporting the LRO mission. Nominally, these interfaces are used to transmit command from the LRO MOC to the corresponding station. The command structure that the LRO MOC uses is dependent upon the station that is scheduled to be the interface for sending commands to the LRO spacecraft. The following conventions are used by the LRO MOC to support the interface with each of the corresponding stations:

• SMEX/LEOT Header is used for transferring telemetry from either the WS1, SN or USN stations to the LRO MOC

4-84

- The Data Storage System (DSS) provides the interface from the HDR to the Station Data Processing System for the transfer of high-speed VC2 and VC3 telemetry VCDUs. The DSS will forward only VCDUs with frame sync, the DSS does not provide any additional headers or trailers.
- Space Link Extension (SLE) telemetry structure for interfacing with DSN stations

The SMEX/LEOT Telemetry header is 10 bytes long and has the following data structure as identified in Figure 4-5; Table 4-22 provides a reference definition for the fields contained within the SMEX/LEOT Telemetry Header.

The ground station will decommutate the Channel Access Data Units (CADU) received from the spacecraft and perform Reed Solomon decoding for eventual delivery of the Virtual Channel Data Unit (VCDU) to the MOC. The SMEX/LEO-T Telemetry header is a 10 byte header attached to every VCDU that is forwarded in real-time to the MOC's T&C system. The details for the CADU & VCDU definition are documented in the T&C Formats Handbook. In the figure below, the fields are represented in bits, not bytes.

	SMEX/LEOT Telemetry Header																	
Version # (2)	Frame Length (14)	RS Enable Flag (1)	RS Error Flag (1)	Enable	CRC Pass/ Fail (1)	MCS Enable Flag (1)	MCS # Error (1)	Inversior		Data Forward /reverse flag (1)	Data	Earth Received Time Flag (1)	Earth Received Time Julian Day (14)			Earth Received Time Msec: (10)		VCDU w/ Frame Sync (1788 bytes)

Field Name	Size (bits)	LRO Value	Nominal Values						
Version	2	ʻ01'	Value = 01, frame data						
Message Length	14	1798 decimal	for LRO = 1798 bytes (includes frame synch and SMEX/LEOT Header)						
Reed-Solomon Enable Flag	1	'1'	Value = 0, RS not enabled; 1, RS enabled Will be 1 for LRO						
Reed-Solomon Error Flag	1	variable	Value = 0, no RS errors 1, RS errors						
CRC Enable Flag	1	'1'	Value = 0, CRC not enabled; 1, CRC enabled						
CRC Pass/Fail	1	variable	Value = 0, pass; 1, fail						
Master channel sequence (MCS) checking enabled flag	1	·0'	Value = 0, MCS not enabled; 1, MCS enabled Not applicable for LRO						
MCS number error	1	,0,	Value = 0, number increased monotonically; 1, number increased by 2 or more; Not applicable for LRO						

Figure 4-5 SMEX/LEOT Telemetry Header

Table 4-22 SMEX/LEOT Field Definitions and Expected Values

Field Name	Size (bits)	LRO Value	Nominal Values
Data inversion flags	2	variable	Value = 00, data true; 01, data inverted; 02, data inverted and corrected
Frame sync mode flags	2	variable	Value = 00, search frame; 01, check frame; 02, lock frame; 03, flywheel frame
Data forward/reverse flag	1	variable	Value = 0, data forward; 1, data reversed
Data Class	5	'01' or '02'	Value = 01, spacecraft telemetry 02, spacecraft command (will be used to identify the station status packet) 03, tracking data (N/A for LRO)
Earth received time of data (PB-5 format): flag bit	1	·0 [,]	1 PB5 flag bit; value = 0
Earth received time of data (PB-5 format): truncated Julian day	14	variable	2-15 Truncated Julian day; 14 bits; truncate the most significant decimal digits, retaining only the four least significant decimal digits ranging from 0000 to 9999. The current Julian day epoch begins on is Jan 01, 2001
Earth received time of data (PB-5 format): seconds of day	1	variable	16 Seconds of day; 17 bits; most significant bit
Earth received time of data (PB-5 format): seconds of day	16	variable	1-16 Seconds of day; 17 bits total; remaining 16 bits from word 3, bit 16, above. Value is variable; range is 0 to 86,399; binary unsigned integer
Earth received time of data (PB-5 format): milliseconds of a second	10	variable	1-10 Milliseconds of a second; value is variable; range is 0 to 999; binary unsigned integer
Fill / spare	6	0	16 Fill/spare

4.2.1 (GNSO-1) SCN Support Schedules

This is a schedule file that contains 1 week of station contacts that support LRO; this support schedule includes WS1, USN, and DSN and SN contacts when required. This support schedule is the version that the Mission Planning System ingests as part of its timeline generation function.

When the LRO MOC receives the WOTIS-generated Operational schedules from the GNSO, it will transfer the product via the scp protocol to FDF Product Center and to the LOLA SOC for eventual transfer to the CDDIS for use by the laser ranging facilities. The MOC merely acts as a conduit to pass on this information to the CCDIS and FDF and does not modify this Operational schedule.

4-86

The Station support schedule is three separate files that are created to cover various Monday – Sunday weekly activity schedules. The basic concepts for the mission schedule identifies three working versions that are used to identify the over all station support schedules for future weeks as noted here:

- Strawman Schedule generated and delivered to the LRO MOC approximately 28 days prior to the start of that week's operational supports and planned scheduled station contacts
- Forecast Schedule generated and delivered to the LRO MOC approximately 2 weeks prior to the start of that week's operational supports and planned scheduled station contacts
- Operational Schedule generated and delivered to the LRO MOC on the Thursday prior to the start of the operational scheduled events; this schedule is conflict free.

In the event the MOC requires changes to the schedule, the MOC will create a schedule file in the same format as described here and send the update request back to WOTIS. The MOC will revise the file name and change the first character in the filename changed to a 'U'. The MOC will make changes to the file as required, which for example, may include changing the TR code or a start and stop time.

Time interval	NA
File duration	Standard Strawman, Forecast, and Operational schedules are 7 days, GNSO can create any file duration for LRO MOC requested schedule updates
File or Data Generation Frequency	Weekly
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC MOC "scp" pushes to FDF (via the FD Communications Server; the backup uses the FDPC) and all SOCs, except for Mini-RF
Data Volume	Variable; based on number of identified station contacts for the week in question
Accuracy (if it applies)	Contact times are accurate to 1 second; based on data from FDF View Period File
Other pertinent details	NA

4.2.1.1 Product Details

4.2.1.2 Format

The Station Support Schedule file is an ASCII-formatted file and consists of the station name, start time, stop time, duration, and configuration identified for the requested station support; the following table provides a brief description of each field: The support activity codes, as initially defined within **Error! Reference source not found.**, are only used to identify a preliminary set

4-87

of TR codes. The LRO operations team and WOTIS scheduling personnel will coordinate the actual codes and how the codes reference Ka-band and S-band Station contacts.

Field name	Field Characteristics		
Support Activity Tag	Up to 15 ASCII Characters, assigned by WOTIS to uniquely identify each specific		
	station contact		
Station Name	4 ASCII Characters that uniquely identify the station, ; in the form of:		
	NNNN; where the 4 character NNNN is one of the station designators:		
	WS1S for LRO White Sands S-band Station		
	WS1K for White Sands Ka-Band Station		
	STSS for SDO backup		
	STSK for the SDO backup Ka-Band		
	USPS for USN Dongara		
	USHS for USN South Point, Hawaii		
	KU1S (or KU2S) for Kiruna, Sweden		
	WU1S (or WU2S) for Wilheim, Germany		
	DS24 for the DSN 34-m at Goldstone, Ca		
	DS34 for the DSN-34m at Canberra, Australia		
	D34K for the DSN 34m Ka-Band site at Canberra, Australia		
	DS54 for the DSN 34-m at Madrid, Spain		
	DS27 for the High-Speed Beam Wave Guide site at Goldstone, Ca,		
	DS45 for the High-Efficiency site at Canberra, Australia		
	DS65 for the High- Efficiency site at Madrid, Spain		
Start time:	YYYYDDDHHMMSS, where		
year	YYYY => 4 ASCII digits of year (2008 – 2013)		
day of year and	DDD => 3 ASCII digits for day of year $(1 - 366)$		
time of day	HHMMSS => 6 ASCII digits for the hours, minutes, and seconds of day		
Stop time:	YYYYDDDHHMMSS, where		
year	YYYY => 4 ASCII digits of year (2008 – 2013)		
day of year and	DDD => 3 ASCII digits for day of year $(1 - 366)$		
time of day	HHMMSS => 6 ASCII digits for the hours, minutes, and seconds of day		
Support Activity Code	3-4 ASCII Character that identifies the station configuration used to support the		
	LRO station contact; allowable values are: TR1 – TR99;		
	The actual LRO TR codes are listed in the Error! Reference source not found.		
Orbit Number	1-5 ASCII Characters representing a monotonically increasing orbit counter; this		
	field is only valid after the first lunar orbit insertion maneuver.		
Band	2 ASCII Characters representing the support contact type; where		
	S1 = S-band Support		
	K1= Ka-Band Support		

Table 4-23 SCN Station Support Schedule Field Definitions

A sample Station Support Schedule file is identified with the following naming conventions:

=>

<S><Mission ID><Year/Date Information><Schedule Duration><Schedule Type>.ext; where

S

1 Character Schedule Type Identifier = s to indicate this is a schedule file from WOTIS

= u to indicate a MOC request to update the schedule

4-88

Mission ID	=>	3 characters to identify the mission = lro
Year/Date Information	=>	7 characters in the form of YYYYDDD, where
		YYYY – start year designator (2008 – 2013) DDD – start day of year (Monday) for the first station contact in the schedule file
Schedule Duration	=>	3 characters d07, d14, where last 2 characters represent the number of days (duration) of the file; nominally set for 7 days
Schedule Type	=>	1 character to identify the specific schedule o = operational f = Forecast s = Strawman
Extension	=>	9 characters xxxxxxxx, nominally represents the DOYHHMMSS of the file creation; this is used to uniquely identify the file

A sample file name for the Support Schedule is defined as follows:

slroYYYYDOYd070.xxxxxxxx – sample file name for the Operational schedule slroYYYYDOYd07f.xxxxxxx – sample file name for the Forecast schedule slroYYYYDOYd14s.xxxxxxx - sample file name for the Strawman schedule NOTE: Because of MOC internal processing requirements, this file name construct is translated to all upper case characters, where appropriate. All downstream users (all SOCs and FDF) receive the file name in an upper case format as noted here: SLROYYYYDOYd070.xxxxxxxx

A sample Station Support Schedule file is provided as a reference in Appendix B, Figure B.2-1.

4.2.2 (WS1-5) (USN-3) Station Raw Tracking Data

The Station Raw Tracking Data provides the LRO Flight Dynamics Facility with the data required to support tracking of the orbiter and generation of orbit and mission products. These data are also transferred to the LRO MOC for eventual distribution to the LOLA SOC.

Each ground station (WS1 and the USN stations) that supports tracking for the LRO mission will create the data in a format identified as the Universal Tracking Data Format (UTDF) as defined in the STDN Tracking and Acquisition Handbook (STDN-724, 1990).

4.2.2.1 Product Details

4-89

Time interval	Doppler data every 5 seconds; Range data, if available, at same 5 second data interval	
File duration	5 minutes	
File or Data Generation Frequency	Every station tracking support	
Delivery method (real-time, SCP, FTP, etc)	WS1 and USN "scp" the data files to the LRO MOC (Stations scp "push") WS1 and USN stations FTP the files to the FDF Comm Server LRO MOC scp pushes the file to the LOLA SOC	
Data Volume	75 bytes of data – every 5 seconds – for 5 minutes	
Accuracy (if it applies)	Best Effort given station contact geometry conditions	
Other pertinent details	NA	

4.2.2.2 Format

This data will be consistent with STDN-724; WS1 can provide the tracking data either as a realtime data source to FDF or as a post-pass file to both FDF and to the LRO MOC. However, the ICD identifies that WS1 should provide LRO tracking data via the file delivery method.

USN always provides the data via a post-pass file transfer.

The tracking data are in a binary form; one datum contains seventy-five (75) bytes of information as identified in the *Tracking and Acquisition Handbook*. The following table provides the fields and field definitions for the station tracking data. FDF does not reference the data contained within byte 45 or byte 47. Since FDF does not use these two fields, the stations should default these two values to represent the closest antenna size used to support the LRO missions.

Byte	Format	Description
1	0D(16)	Fixed
2	0A(16)	Fixed
3	01(16)	Fixed
4-5	ASCII	Tracking Data Router 4141=AA=GSFC 4444=DD=GSFC
6	Binary	Last two digits of current year
7-8	Binary	Satellite Identification Code (SIC)
9-10	Binary	Vehicle Identification (VID)
11-14	Binary	Seconds of year
15-18	Binary	Microseconds of second

Table 4-24 WS1 Raw Tracking Data File Field Definitions

Note: For bytes 19-22/23-36, convert angle data to decimal form. Angle data are given in fractions of a circle. To express raw angle in degrees, multiply decimal angle by 8.381903173×10^8 (360 degrees divided by 232)

19-22	FOC	Angle 1: X or az
23-26	FOC	Angle 2; Y or el (angle 2 byte/bit format is the same as for bytes 19- 22.)
27-32	Binary	RTLT in 1/256 nsec (MSB = 524288 ns; LSB = 0.00390625 ns)
33-38	Binary	Bias Doppler, counts of: 240 MHz +1000 fd1 LSB - 1 count
39-40	Binary	AGC (an integer * (-150/8192) AGC-50=dBm)
41-44	Binary	Transmit frequency information in 10's of Hz

Byte	Format	Description
45	Discrete	MSD = antenna size (xmit) as follows: 0(16) = less than 1 m 1(16) = 3.9 m 2(16) = 4.3 m 3(16) = 9 m 4(16) = 12 m 5(16) = 26 m 6(16) = TDRSS ground antenna 7(16) = 6 m 8(16) = 7.3 m 9(16) through Feet = spares LSD = antenna geometry (xmit) as follows: 0(16) = az-el 1(16) = X-Y (+X-south) 2(16) = X-Y (+X-east)
		3(16) = RA-DEC 4(16) = HR-DEC 5(16) through F(16) = spares
46	Binary	Pad ID (xmit)
47	Discrete	Antenna size (rcv) – (see byte 45)
48	Binary	Pad ID (rev)
49-50	Discrete	Mode-system unique (refer to Table 2)
51	Discrete	Data Validity Bit 8 = (MSB) sidelobe (1-sidelobe) 7 = destruct R (1 = destruct) 6 = refraction correction to R, R (1corrected) 5 = refraction correction to angles (1 =corrected) 4 = angle data correction (1 =corrected) 3 = angle valid (1=valid) 2 = R ^o valid (1=valid) 1 = (LSB) R valid (1=valid)
52	Discrete	MSD = frequency band, as follows: $1(16) = VHF$ $2(16) = UHF$ $3(16) = S-band$ $4(16) = C-band$ $5(16) = X-band$ $6(16) = Ku-band$ $7(16) = visible$ $8(16) through F(16) = spares$

Byte	Format	Description
		LSD = data transmission type, as follows:
		0(16) = test
		1(16) = spare
		2(16) = simulated
		3(16) = resubmit
		4(16) = RT (real time)
		5(16) = PB (playback)
		6(16) through $F(16) =$ spares
53-54	Discrete	MSD - tracker type Byte 53, bits 8 thru 5:
		0(16) = C-band pulse track
		1(16) = SRE (S-band and VHF) or RER
		2(16) = X-Y angles only (data acquisition antenna)
		3(16) = spare
		4(16) = SGLS (AFSCN S-band trackers)
		5(16) = spare
		6(16) = TDRSS
		7(16) through $F(16) =$ spares
		Byte 54, bit 4:
		1 = last frame of data
		Byte 53, bits 3 thru 1 and eight bits of byte 54:
		11 bits for transmission rate (positive indicates the binary
		seconds between samples up to a maximum of 1023; negative
		indicates the two's complement of the number of samples per
		second).
55-72	Spare	
73	04(16)	Fixed
74	04(16)	Fixed
75	04(16)	Fixed

WS1 stores these UTDF data records into a file based on the 5-minute duration and then forwards the file to both the FDF and LRO MOC facility. Similarly, the USN station provides the same support capabilities and delivery concepts for transferring the data to the LRO MOC and to FDF.

A UTDF Tracking data file is identified with the following naming conventions:

 $<\!\!File Qualifier\!\!>_<\!\!Spacecraft Designations\!\!>_<\!\!Receiver PADID\!\!>_<\!\!Date Information\!\!>.<\!\!ext\!\!>; where$

File Qualifier => 6 ASCII characters to identify the type of UTDF data = LSUTDF (indicates low-speed UTDF data)

4-93

Spacecraft Designations	=>	6 ASCII Digits (SSSSVV) to identify the spacecraft designation, where SSSS = Spacecraft ID (0059 for LRO) VV = Vehicle ID (01 for LRO)
Receiver PADID	=>	 3ASCII Digits to identify the station receive PAD identifier 188 for the White Sands station 189 for the SDO Backup station 103 for USPS for USN Dongara 105 for USHS for USN South Point, Hawaii 126 for KU1S (or KU2S) for Kiruna, Sweden 128 for WU1S (or WU2S) for Wilheim, Germany
Date Information	=>	11 ASCII digits, separated by the underscore (_) Character, in the form of YYYY_DDD_HHMM; where YYYY = 4 ASCII digits for year (2008 -2013) DDD = 3 ASCII digits for day of year (001 - 366) HHMM = 4 ASCII digits (24 Hour time qualifier) to represent the hours and minutes of when the station closed the file
File Extension	=>	3 ASCII Characters; default to trk

A sample file name for the first WS1 generated low-speed UTDF tracking data file that corresponds to a file that the station closed at 0957GMT on 25 January 2009 is defined as follows: LSUTDF_005901_188_2009_025_0957.trk

The station tracking data file is a binary formatted file and as such, no sample is provided in Appendix B.

4.2.3 (WS1-10) (USN-6) Archived VC0 Telemetry Data

This interface consists of the downlinked data that are stored in a file format at a station upon receipt of the real-time spacecraft housekeeping telemetry. These data are stored with the fill data (VC63) removed. These files are stored at the ground station using their local storage functionality. The stations store the files for up to seventy-two (72) hours in the event of a possible retransmission to the LRO MOC upon request by the LRO operations team; this would normally be considered within a contingency support concept.

4.2.3.1 Product Details

Time interval	Variable based on Orbiter VC0 Data collection filters and per APID		
File duration	Based on station contact interval WS1 file duration limited to 60 minutes		
File or Data Generation Frequency	Per station contact; WS1 create 1:N files per station contact USN creates 1 file per station contact		
Delivery method (real-time, SCP, FTP, etc)	MOC scp pulls from the WS1 station USN scp pushes the files to the MOC upon MOC request		
Data Volume	Variable; based on APIDs and downlink rate		
Accuracy (if it applies)	NA; based on data mnemonics for specified APIDs		
Other pertinent details	WS1/USN sites archive data for 72 hour retention		

4.2.3.2 Format

The Archived VC0 Telemetry Data are stored with the VC63 (fill data) removed. The station archives the VC0 data stream (the downlinked VCDUs) using the station generated SMEX/LEOT Header.

A sample Archived VC0 Telemetry Data File is a binary file of the downlinked telemetry data; as such, no sample product is listed in Appendix B.

When, or if requested, by the LRO MOT, the station would transfer the archived VC0 Telemetry file back to the LRO MOC facility using the secure copy mechanism. The archive files that WS1 creates are based on configurable time duration; this configurable duration is set for the LRO mission at 60 minutes. However, the LRO Mission Operations Support Plan (MOSP), 431-PLAN-000050, will finalize the details of this file size duration and identify any instances when and how the MOT could request a different file size limit.

The archive files that the USN stations create are not configurable based on a time duration; USN creates one archive file that corresponds to the complete station contact interval.

An Archived VC0 telemetry file name is identified with the following naming conventions:

<SID> <SIC> <Data Source> <Scheduled AOS Time> <File Number>.vc0; where

=>

SID

3-4 ASCII Characters for the station ID WS1 for White Sands USPS for USN Dongara, Australia USHS for USN South Point, Hawaii KU1S (or KU2S) for Kiruna, Sweden WU1S (or WU2S) for Wilheim, Germany

4-95

SIC	=>	4 ASCII Digits to identify the spacecraft ID = 0059
Data Source	=>	4 ASCII characters for the source of the data
		= rcp1 or rcp2 (from WS1)
		= REC1 for USN stations
Schedule AOS time	=>	13 ASCII characters in the form of
		YYYYDOY HHMMSS, where
		YYYY - start year designator (2008 – 2013)
		DDD - start day of year (0 - 366)
		HHMMSS – Hours, Minutes and seconds of AOS
File Number	=>	4 ASCII digit number to indicate the sequence of the file in
		the segmented series of files for a particular pass
		=(0001 - 9999)
		NOTE: Does not apply for USN stations and is not used in
		the file name conventions
extension	=>	4 ASCII characters, vcnn; where
		nn = 00, (used to represent the Virtual Channel 0)

For example, for an LRO pass captured at the WS1 station that began on DOY 223 at 12:15:07 in the year 2008, where the data was received from High data-rate receiver #1, and the segment time is set to 3600 seconds (as is expected for LRO), the filename would be:

WS1_0059_rcp1_2008223121507_0001.vc00

If there were multiple files associated with one pass, the files would be named as follows: WS1_0059_rcp1_2008223121507_0001.vc00 WS1_0059_rcp1_2008223121507_0002.vc00 WS1_0059_rcp1_2008223121507_0003.vc00 WS1_0059_rcp1_2008223121507_0004.vc00

For an LRO VC0 Archive file captured at the Dongara station that began on DOY 223 at 21:12:50 in the year 2008, the file name would be identified as: USPS_0059_REC1_2008223211250.vc00

4.2.4 (WS1-11) (USN-7) Archived VC1 Telemetry Data

This interface consists of the downlinked VC1 data that are stored in a file format at a station upon receipt of the spacecraft housekeeping telemetry. These data are stored with the fill data (VC63) removed. These files are stored at the ground station using their local storage functionality. The files are stored for up to seventy-two (72) hours in the event of a possible retransmission to the LRO MOC upon request by the LRO operations team; this would normally be considered within a contingency support concept.

4-96

4.2.4.1 Product Details

Time interval	Variable based on Orbiter VC1 Data collection filters and per APID	
File duration	Based on station contact interval WS1 file duration limited to 60 minutes	
File or Data Generation Frequency	Per station contact	
Delivery method (real-time, SCP, FTP, etc)	MOC scp pulls from the WS1 station USN scp pushes the files to the MOC upon MOC request	
Data Volume	Variable; based on APIDs and downlink rate	
Accuracy (if it applies)	NA; based on data mnemonics for specified APIDs	
Other pertinent details	WS1/USN sites archive data for 72 hour retention	

4.2.4.2 Format

The Archived VC1 Telemetry Data File is stored with the VC63 (fill data) removed. The station archives the VC1 data stream (the downlinked VCDUs) using the station generated SMEX/LEOT Header. The archive files that WS1 creates are based on configurable time duration; this configurable duration is set for the LRO mission at 60 minutes. However, the LRO MOSP, 431-PLAN-000050, will finalize the details of this file size duration and identify any instances when and how the MOT could request a different file size limit.

A sample Archived VC1 Telemetry Data File is a binary file of the downlinked telemetry data; as such, no sample product is listed in Appendix B.

An Archived VC1 telemetry file name is identified with the following naming conventions:

<sid>_<sic>_<c< th=""><th>ata Source>_<s< th=""><th>cheduled AOS Time>_<file number="">.vc1; where</file></th></s<></th></c<></sic></sid>	ata Source>_ <s< th=""><th>cheduled AOS Time>_<file number="">.vc1; where</file></th></s<>	cheduled AOS Time>_ <file number="">.vc1; where</file>
SID	=>	3-4 ASCII Characters for the station ID WS1S for White Sands USPS for USN Dongara, Australia USHS for USN South Point, Hawaii KU1S (or KU2S) for Kiruna, Sweden WU1S (or WU2S) for Wilheim, Germany
SIC	=>	4 ASCII Digits to identify the spacecraft ID = 0059
Data Source	=>	4 ASCII characters the source of the data as provided by the MCS = rcp1 or rcp2 (from WS1) = RECn, where n=1,2 for USN stations

4-97

Schedule AOS time	=>	13 ASCII characters in the form of YYYYDOYHHMMSS, where
		YYYY – start year designator $(2008 - 2013)$ DDD – start day of year $(0 - 366)$ HHMMSS – Hours, Minutes and seconds of AOS
File Number	=>	 4 ASCII digit number to indicate the sequence of the file in the segmented series of files for a particular pass = (0001 - 9999) NOTE: Does not be applicable for USN archived data files
		and is not used in the file name conventions
extension	=>	4 ASCII characters, vcnn; where nn = 01, (to represent the Virtual Channel 1)

For example, for an LRO pass that began on DOY 223 at 12:15:07 in the year 2008, where the data was received from High data-rate receiver #2, and the segment time is set to 3600 seconds (as is expected for LRO), the archived VC01 filename would be:

WS1S_0059_rcp2_2008223121507_0001.vc01

If there were multiple files associated with one pass, the files would be named as follows: WS1S_0059_rcp2_2008223121507_0001.vc01 WS1S_0059_rcp2_2008223121507_0002.vc01 WS1S_0059_rcp2_2008223121507_0003.vc01 WS1S_0059_rcp2_2008223121507_0004.vc01

For an LRO VC1 Archive file captured at the Dongara station that began on DOY 223 at 21:12:50 in the year 2008,, the file name would be identified as: USPS 0059 REC1 2008223211250.vc01

4.2.5 (WS1-12) (WS1-13) Archived Telemetry Data File

This interface consists of the downlinked data that are stored in a file format at a station upon receipt of any telemetry that is downlinked in either VC2 or VC3. These data are stored with the fill data (VC63) removed. These files are stored at the ground station using their local storage functionality; this storage takes place before the data are routed to the LRO SDPS. The files are stored for up to seventy-two (72) hours in the event of a possible retransmission to the LRO MOC upon request by the LRO operations team; this would normally be considered within a contingency support concept.

4-98

4.2.5.1 Details

Time interval	Variable based on specified Data collection filters and per APID for any data downlinked via VC2 or VC3	
File duration	Based on station contact interval WS1 file duration limited to 60 minutes	
File or Data Generation Frequency	1:N files per station contact	
Delivery method (real-time, SCP, FTP, etc)	MOC scp pulls the data from the WS1 Data Storage System	
Data Volume	Variable; based on APIDs and downlink rate	
Accuracy (if it applies)	NA; based on data mnemonics for specified APIDs	
Other pertinent details	WS1 archive data for 72 hour retention	

4.2.5.2 Format

The Archived Telemetry Data File is stored with the VC63 (fill data) removed. The station archives the data stream (the downlinked VCDUs) with attached frame sync. Only good quality frames are recorded and all R-S check symbols are removed. The archive files that WS1 creates are based on configurable time duration; this configurable duration is set for the LRO mission at 60 minutes. However, the LRO MOSP, 431-PLAN-000050, will finalize the details of this file size duration and identify any instances when and how the MOT could request a different file size limit.

A sample Archived Telemetry Data File is a binary file of the downlinked telemetry data; as such, no sample product is listed in Appendix B.

An Archived telemetry data file name is identified with the following naming conventions:

<sid>_<sic>_<da< th=""><th>ta Source>_<s< th=""><th>scheduled AOS Time>_<file number="">.vcn; where</file></th></s<></th></da<></sic></sid>	ta Source>_ <s< th=""><th>scheduled AOS Time>_<file number="">.vcn; where</file></th></s<>	scheduled AOS Time>_ <file number="">.vcn; where</file>
SID	=>	4 ASCII Characters for the station ID = WS1S for White Sands
SIC	=>	4 ASCII Digits to identify the spacecraft ID = 0059
Data Source	=>	4 ASCII characters the source of the data as provided by the MCS = HDR1 or HDR2

4-99

Schedule AOS time	=>	13 ASCII characters in the form of YYYYDOYHHMMSS, where
		YYYY – start year designator $(2008 - 2013)$ DDD – start day of year $(0 - 366)$ HHMMSS – Hours, Minutes and seconds of AOS
File Number	=>	4 ASCII digit number to indicate the sequence of the file in the segmented series of files for a particular pass = $(0001 - 9999)$
extension	=>	4 ASCII characters, vcnn; where nn = 00, 01, 02, or 03 (to represent the virtual Channel ID)

For example, for an LRO pass that began on DOY 223 at 12:15:07 in the year 2008 and where VC2 data are received from High data-rate receiver #1, and the segment time is set to 3600 seconds (as is expected for LRO), the filename would be:

WS1S_0059_HDR1_2008223121507_0001.vc02

If there were multiple files associated with one pass, the files would be named as follows:

WS1S_0059_HDR1_2008223121507_0001.vc02

WS1S 0059 HDR1 2008223121507 0002.vc02

WS1S 0059 HDR1 2008223121507 0003.vc02

WS1S_0059_HDR1_2008223121507_0004.vc02

An Archived VC3 telemetry data file is not shown as an example since it follows a similar file name concept.

4.2.6 (WS1-6) (WS1-7) (USN-4) (USN-5) (SN-1) Real-time Orbiter Telemetry Data

This is the real-time data stream that is sent from the stations to the LRO MOC during a real-time station contact; the data stream consists of the Virtual Channel Data Units (VCDUs) that the Orbiter downlinks during this support. The real-time data are Reed-Solomon decoded by the station prior to the transfer to the LRO MOC. This interface applies for both the real-time VC0 and the VC1 data that are downlinked during the station contact.

Time interval	Variable based on Orbiter VC0 or VC1 Data collection filters and per APID
File duration	NA
File or Data Generation Frequency	NA
Delivery method (real-time, SCP, FTP, etc)	Real-time TCP socket connection MOC-ITOS issues connection requests to SN, DSN, and WS1 USN stations issue connection requests to MOC-ITOS

4.2.6.1 Product Details

4-100

Data Volume	Variable; based on APIDs and downlink rate
Accuracy (if it applies)	NA; based on data mnemonics for specified APIDs RF link is operating at nominal conditions as per the RF ICD
Other pertinent details	The station performs R-S decoding and only ships VC0 data that passes the R-S decoding; the station will not send any data that fails the R-S decoding.

4.2.6.2 Format

The real-time data product for the virtual channel (VC) format is defined in the LRO Telemetry and Command Formats Handbook (LRO-HDBK-000052). The station inserts the VCDUs into a structure that has a SMEX/LEOT header.

This interface is the real-time VC telemetry stream that contains the downlinked telemetry in the VCDUs; this is a stream of binary data and as such, will not be represented in the Appendix B.

4.2.7 (WS1-1) (USN-1) Station Status Packets

This interface consists of status packets, which contain the general station status information, the downlink performance related to data quality, data statistics, RF status, and uplink time. This information is sent in a CCSDS fixed data packets; each station is assigned a unique APID to provide this status packet data.

Time interval	Every 1 second for all WS1 and USN sites		
File duration	NA		
File or Data Generation Frequency	Status Packet delivered Every 1 second as noted above		
Delivery method (real-time, SCP, FTP, etc)	Real-time TCP socket connection from station to the prime MOC-ITOS		
Data Volume	88 bytes per status packet for the USN Station Status Packets236 bytes for WS1 Station Status packets		
Accuracy (if it applies)	NA; based on data mnemonics for specified APIDs		
Other pertinent details	NA		

4.2.7.1 Product Details

4.2.7.2 Format

The Station Status Packets contains the real-time quality and monitoring statistics for the telemetry and command functions. The data statistics are contained within a standard CCSDS packet and defined as a standard APID so that the LRO T&C system (ITOS) can decommutated the packet and display the monitor information.

These station status packets are formatted within the standard CCSDS primary packet header (6 bytes) and secondary packet header (6 bytes). These CCSDS primary and secondary packet headers are defined within the CCSDS Blue Book; they will not be re-referenced here.

4-101

These data quality statistics are reset before the next station contact. The station status packets are identified by APIDs in the LRO Telemetry and Command Handbook - Database (431-HDBK-000053) and are binary data packets; as such, no sample product is provided in Appendix B.

The USN ICD 1A00846, USN to LRO ICD, is the governing document for the content of the USN stations status packets. The WS1 ICD (453-ICD-GN/WS1) is the governing document for the WS1 Station Status packet definition.

4.2.8 (WS1-2) (USN-2) Weather Data

This file contains the weather information per pass, such as the temperature, barometric pressure, and relative humidity, and wind speed collect during the WS1 or USN station contact.

4.2.8.1 Product Details

Time interval	Data sampled every 5 minutes		
File duration	Based on station contact times		
File or Data Generation Frequency	Every station contact		
Delivery method (real- time, SCP, FTP, etc)	scp post pass from supporting station to LRO MOC MOC scp pushes the data to the LOLA SOC		
Data Volume	~ 5 Kbytes per file		
Accuracy (if it applies)	Temperature accurate to tenths of a degree Celsius Pressure accurate to tenths of a millibar of pressure Relative humidity accurate to the tenths of a percentage point Wind speed accurate to the nearest whole value in Kilometers per hour		
Other pertinent details	NA		

4.2.8.2 Format

The Weather data are an ASCII formatted, space-delimited, information sent in a file format. It consists of multiple lines in which the first line contains start date (YYYYMMDD), Day of Year (DDD), and station identifier information and then there are 1:N repeating lines that provide the following information:

Time reference, temperature, Pressure, Relative Humidity, and Wind Speed

The following table defines the format of the weather file product:

Field Characteristics		
First Line of File		
 17 ASCII Characters with the following format: YYYYMMDD DDD NNNN; where: YYYYMMDD, defined as YYYY => 4 ASCII digits of year (2008 – 2013) MM => 2 ASCII digits for the month (01 – 12) DD => 2 ASCII digits for the day (01 – 31) DDD => 3 ASCII digits for day of year (1 – 366) NNNN => 4 ASCII Characters for the Station Identifier (e.g., WS1S for White Sands 1 Ka/S-Band Station USPS = USN Dongara USHS for USN Hawaii KI3S for Kiruna, Sweden WG1S for Wilheim, Germany 		
Repeating Lines (1:N) of File		
=> 5 ASCII characters with the following format: HH:MM; where HH => 2 ASCII digits for hours (01- 23) MM => 2 ASCII digits for minutes (00- 59)		
 5 ASCII characters; First ASCII Character is the sign indicator of the temperature; where BLANK = positive temperature = Negative temperature Next 2 ASCII Character represent the whole temperature value (0 -99) Next character is the decimal point separator (.) Last 1 Character is the tenths of a degree temperature (0 - 9) 		
 6 ASCII characters; 4 ASCII Character represent the whole value of pressure (0000 -1200); with leading zeros, if necessary Next character is the decimal point separator (.) Last 1 Character is the tenths of the pressure (0 - 9) 		
 5 ASCII characters with the following definition 3 ASCII Character represent the whole value of relative humidity (000 -100); with leading zeros, if necessary Next character is the decimal point separator (.) Last 1 Character is the tenths of a percentage of the relative humidity (0 - 9) 		
2 ASCII Digits represent the whole value of wind speed (00 - 99)		

Table 4-25 Station Weather Data Field Definitions

NOTE2: For condition where there may be invalid weather data or no weather data for any particular sample period, the option is to skip the entry for that sample period.

4-103

The file name has the following naming convention: <station id=""> <station aos="" contact="" time="">.wea</station></station>			
Station ID	=>	4 ASCII Characters for the station ID WS1S = White Sands USPS = USN Dongara USHS = USN Hawaii KI3S = Kiruna, Sweden WG1S = Wilheim, Germany; followed by the underscore (_) character	
Schedule AOS time	=>	12 ASCII Digits in the form of YYYYDOY_HHMM, where	
		YYYY – start year designator $(2008 - 2013)$ DDD – start day of year $(0 - 366)$ HHMM – Hours and Minutes of AOS HH = $(00 - 23)$ MM = $(00 - 59)$ Note: There is an underscore (_) separator between the DDD and the HH fields	
extension	=>	3 ASCII characters, wea (to represent this is a weather file); file extension is represented as lower-case letters	

For example, the file name for the weather product from White Sands has the following file sample:

WS1S_2009040_0824.wea.

A sample Weather Data file is provided as a reference in Appendix B, Figure B.2-2.

4.2.9 (WS1-3) (WS1-4) Ka-Band Telemetry

This interface is the real-time data stream consisting of either the VC2 or VC3 VCDUs, which the WS1 high-rate data receiver (HDR) transfers through the Data Storage System to the LRO Station Data Processing System. This product consists of VCDUs with frame sync mark and are transferred from the DSS to the DPS via a socket connection.

4-104

4.2.9.1 Product Details

Time interval	Variable based on Instrument VC2 or VC3 Data collection filters
File duration	NA
File or Data Generation Frequency	VC2 and VC3 VCDUs delivered as received from Orbiter during ground station contact
Delivery method (real-time, SCP, FTP, etc)	Real-time socket from station High Rate Data Receiver to LRO Station DPS element
Data Volume	Variable
Accuracy (if it applies)	NA
Other pertinent details	The WS1 Data Storage System filters any data that fails the Reed-Solomon decoding checks; The station DPS only receives good quality data.

4.2.9.2 Format

The Ka-Band Telemetry Data are a composite of VCDUs received at the station and transmitted to the SDPS element. The VCDUs are composed of specific APIDs for each science instrument. The VCDU formats the underlying APIDs are defined in the LRO Telemetry and Command Handbook – Database (431-HDBK-000053); these products are binary data packets and are not shown as a sample product in Appendix B.

4.2.10 (WS1-8) Ka-Band RF Receiver Data

The Ka-Band RF Receiver Data are the RF Strength data from Ka-Band receiver that will be used for HGA calibration.

Time interval	Data samples provided at 1 Hz frequency during WS1 Ka Band station contact
File duration	Variable, based on Ka-band contact $(20 - 60)$ minutes
File or Data Generation Frequency	Every WS1 station contact during the HGA Cal phase Nominally during Orbiter commissioning; might be 1-2 times during normal operations, if required
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC at the completion of the station contact
Data Volume	Variable based on station contact duration; approx 200 Kbytes for a 20 minute duration contact
Accuracy (if it applies)	Receiver strength accuracy is identified by the intrinsic 32-bit floating point value that provides the receiver strength Timetag accurate to 0.1 second
Other pertinent details	NA

4.2.10.1 Product Details

4.2.10.2 Format

The Ka-Band RF Receiver Data File is an ASCII formatted file in which commas separate the fields within the file. The file contains multiple data records, which is formatted as an ITOS-like sequential print file.

The 1:N lines of data records have the following details as identified in the following table.

Field name	Field Characteristics
APID	[5 ASCII Digits]; defaults to 00000
Separator	[1 ASCII Character]; a comma character to separate the APID from the time tag field
Date, Time Field	[24 ASCII digits and characters to identify the UTC time stamp for the data; formatted as: YYYY-DOY-HH:MM:SS.mmmuuu; [8 ASCII digits/characters for the year and day of year; the 2 fields are separated by the hyphen (-) character [15 ASCII Digits/Characters] to identify the hours, minutes seconds, and milliseconds and microseconds for the time stamp; fields are separated by the colon (:) or period (.) designators
Separator	[1 ASCII Character]; a comma character to separate the time tag field from the first mnemonic
Mnemonic Name for KA-Band Receiver Strength	[11 ASCII Characters] Default to GSHDRIFLVL1
Separator	[1 ASCII Character]; a comma character to separate the first mnemonic from the first blank field
Blank Field	[3 ASCII Characters] default to 3 ASCII spaces
Separator	[1 ASCII Character]; a comma character to separate the first blank field first from the mnemonic data value
Mnemonic Value for Ka-Band Receiver Strength	[13 – 14 ASCII Digits/characters] representation of the Ka-Band Receiver data; encoded in a representation, between -128 to 127 dBm; in the form of: -nnn.mmmmmmmm to nnn.mmmmmmmm; includes the leading minus sign for negative values and a blank for positive values (See Note 1)
Separator	[1 ASCII Character]; a comma character follows the last field in the data record
Note 1: value is accurate only to a	oproximately 6 decimal digits of precision.

Table 4-26 WS1 Ka-Band Receiver Data Field Definitions

A sample Ka-Band RF Receiver Data file is provided as a reference in Appendix B, Figure B.2-3. The sample file naming format is identified as Follows:

4-106

<Station Name> <Data Source> <Station AOS>.<karf>, where:

—		<u> </u>
Station Name	=>	4 ASCII Characters for the station name followed by an underscore; = WS1S to denote the White Sands station; followed by the underscore (_) character
Data Source	=>	4 ASCII characters the source of the data as provided by the MCS = HDR1 or HDR2 for the White Sands stations; followed by the underscore (_) character
Scheduled AOS Time	=>	YYYYDOYHHMM; followed by a period; where YYYY is the 4 digit year representation $(2008 - 2013)$ DOY is the 3 digit representation for day of year $(1 - 366)$ HHMM is the 4 digit scheduled AOS time for that specific station contact (24 Hour time reference; e.g., 0000 to 2359)
extension	=>	4 ASCII characters karf; used to represent this file represents Ka-band RF receiver status data; the file extension is represented in lower case letters

For example, for an LRO pass that began on DOY 333 at 12:15:07 in the year 2008, where the White Sands' High Data-Rate receiver #2 provided the source of the data, the filename would be identified with the following naming convention:

WS1S_HDR2_20083331215.karf

4.2.11 (WS1-14) (WS1-16) Raw Telemetry File Data

This interface consists of the data downlinked using either the VC2 or VC3 channel that are stored in a file format at a station upon receipt of the corresponding instrument telemetry. These data are stored with the fill data (VC63) removed. These files are the transmitted products between the SDPS, located at the WS1 station, and the LRO MOC. These files are the raw data files as they existed on board the spacecraft.

4-107

4.2.11.1 Product Details

Time interval	Variable based on VC2/VC3 Data collection filters and per APID from any file that the MOT commanded down using VC2/VC3
File duration	Variable, based on 1MByte, 1 hour, or instrument commanded limits
File or Data Generation Frequency	Every WS1 KaBand Station contact
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC
Data Volume	Variable; based on file durations as defined above
Accuracy (if it applies)	NA, based on specific data product and mnemonic values as defined in T&C Handbook
Other pertinent details	NA

4.2.11.2 Format

The Raw Telemetry File Data is formatted to contain a series of Virtual Channel Data Units (VCDUs) for that specific VC. The VCDU format and the file naming conventions are defined in the LRO Telemetry and Command Formats Handbook (LRO-HDBK-000052).

This file contains the selected APIDs downlinked via the VC2/VC3 channel. This file contains the data in a binary format; as such, no sample product is provided as a reference in Appendix B.

4.2.12 (DSN-1) DSN Tracking Data

The DSN Tracking Data File provides the LRO Flight Dynamics Facility with the data required to support tracking of the orbiter and generation of orbit and mission products.

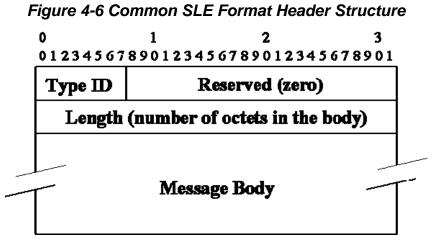
Time interval	Data (Range point) collected every 40 seconds
File duration	NA
File or Data Generation Frequency	Every DSN station contact
Delivery method (real-time, SCP, FTP, etc)	Near Real-time socket using UDP/IP protocols to FDF (SFDU format) via Closed IONet
Data Volume	Variable
Accuracy (if it applies)	Based on TRK-2-34 format
Other pertinent details	DSN, which supports LRO through the 34 meter subnet, will provide this data such that it is consistent with the TRK-2-34 format.

4.2.12.1 Product Details

4-108

4.2.12.2 Format

This data will be consistent with DSN formatted tracking data as identified via the TRK-2-34 format. The data product is a binary file and as such, no sample product is provided in Appendix B.


4.2.13 (DSN-2) (DSN-3) Real-time Telemetry Data

The real-time data consists of the orbiter housekeeping telemetry data packets that the spacecraft downloads to the DSN station in real-time. This interface consists of the downlinked packet data that are transferred with the fill data (VC63) removed.

The SLE service uses three types of messages using a common format for exchange of data over an established TCP connection:

- An SLE PDU message for transfer of SLE PDUs;
- A context message to transmit initialization parameters;
- A heartbeat message periodically used to probe an idle TCP connection.

The following figure identifies the SLE structure for the telemetry interfaces with the LRO MOC.

The following table identifies the fields used within this figure:

Field	Representation
Type ID	8 bits that identify the SLE Message PDU type =1 represents an SLE PDU Message =2 represents a Context Message =3 represents a Heartbeat Message
Reserved	24 bits, reserved and set to all zeros (0)
Length (octets)	32 bits that provide the message body length; represented as a binary unsigned integer value
Message Body	1:N 32 bit octets of PDU message data

Table 4-27 SLE Telemetry Header Structure Definitions

The MOC issues a "Return Channel Frames (RCF)" to request a selective return of either VC0 or VC1; the MOC would issue 2 RCFs Service Binds to request DSN to return VC0 and VC1 as two separate connections.

The LRO MOC will request the "*online timely*" option for the VC0 data transfer from DSN. The "*online timely*" description implies that the currency of the data is more important than its completeness.

The LRO MOC will request the "online complete" option for the VC1 transfers from DSN. The "online complete" implies that the completeness of the data is more important than its currency. LRO and DSN have negotiated all other bind options for the service instance identifier, such as IP addresses, port numbers, destination and host machines. The LRO and DSN operations teams control these values; the DSN Operations team fully tests the service instances before entering them into the operational environment.

The LRO MOC will first issue a bind request using the type ID =2; the message body will contain the heartbeat interval and dead factor and described within the DSN telecommand document, *DSN 820-013 0163-Telecomm Interface Document*. That document identifies the information that the MOC would use to instantiate the SLE connection with DSN. After a successful RCF SLE Bind connection and an associated RCF Start request, the LRO MOC will wait for DSN to send the SLE PDU messages.

4.2.13.1 Product Details

Time interval	Variable based on VC0 or VC1 Data collection filters and per APID
File duration	NA
File or Data Generation Frequency	Every DSN station contact SLE using either the Return all Frames (RAF) or Return Channel Frames (RCF) option
Delivery method (real-time, SCP, FTP, etc)	Real-time socket to LRO MOC from JPL telemetry recorder Near real-time as the data are received
Data Volume	Variable
Accuracy (if it applies)	NA
Other pertinent details	SLE formatted data stream.

4.2.13.2 Format

The Real-time VC0 Telemetry Data are formatted to contain a series of Virtual Channel Data Units (VCDUs) for VC0. The VCDU format is defined in the LRO Telemetry and Command Formats Handbook (LRO-HDBK-000052).

Since this is a stream of real-time packets, which are sent in a binary format consistent with the LRO Telemetry and Command Formats Handbook (LRO-HDBK-000052), and via the CCSDS SLE interface. There are no sample products listed in Appendix B; the user may reference DSN 820-013 0163-Telecomm interface document for additional details.

4.2.14 (DSN-5) (DSN-6) Archived Telemetry Data

Nominally, DSN delivers both the VC0 and VC1 data to the LRO MOC in near real-time. The DSN station also stores the downlinked data for up to 72 hours in the event that the LRO MOT requests a retransmission of the data; this would normally be considered within a contingency support concept.

This interface consists of the downlinked data that are stored in a file format at the DSN upon receipt of the real-time spacecraft housekeeping telemetry. These data are stored with the fill data (VC63) removed.

This interface is for a contingency request to retransmit specified data after the original station contact. The MOT would request a post-pass transfer of data from the DSN's storage facility. This request is treated as another "real-time" connection to transfer a specified set of APIDs. The MOC would request a RCF Service Bind option (for a specified channel) and would identify a specified time interval. This offline transfer assumes that DSN provides a complete set of data in the post-pass transfer.

4-111

4.2.14.1 Product Details

Time interval	Variable based on VC0 or VC1 Data collection filters and per APID
File duration	NA
File or Data Generation Frequency	Can be accessed for every DSN station contact
Delivery method (real-time, SCP, FTP, etc)	As requested by MOC (Post-pass) using Real-time socket to LRO MOC SLE using Return Channel Frames (RCF) option
Data Volume	Variable
Accuracy (if it applies)	NA
Other pertinent details	SLE formatted data stream. From the archived file

4.2.14.2 Format

The Archived Telemetry Data File is stored at JPL's storage facility as it is received from the station with VC63 (fill data) removed. The format of this data contains VCDU formatted APIDs and is defined in the LRO Telemetry and Command Formats Handbook (LRO-HDBK-000052).

A sample Archived Telemetry Data File is a binary file of the downlinked telemetry data; as such, no sample product is listed in Appendix B; the user may reference DSN 820-013 0163-Telecomm interface document for additional details.

DSN returns the Archived telemetry data via a socket connection to the LRO MOC as an off-line data transfer; this transfer is similar in nature to the real-time data delivery, except that it occurs post-pass and the LRO MOC's initiating telemetry and command system might not be the prime telemetry and command element. DSN routes the archived Telemetry data back to the LRO MOC via the CCSDS SLE interface.

4.2.15 (DSN-4) DSN Station Monitor Packets

This interface consists of the DSN status packets, which contain the general station information, the downlink performance related to data quality, data statistics, RF status, and uplink time.

4.2.15.1 Product Details

Time interval	Every 5 seconds
File duration	NA
File or Data Generation Frequency	Every DSN station contact
Delivery method (real-time, SCP, FTP, etc)	Real-time UDP socket to LRO MOC

4-112

Data Volume	Variable
Accuracy (if it applies)	Based on DSN-MON-0158 documentation
Other pertinent details	Based on DSN-MON-0158 documentation Quality Status reset before next station contact DSN Quality statistics are defined per antenna pad identifier, not just a station qualifier

4.2.15.2 Format

The DSN Station Status Packets contain the data as specified by the DSN MON-0158 format. For each DSN station contact, the station provides the data quality statistics, as listed in DSN-MON-0158) every 5 seconds. The station status packets are encased within Standard Formatted Data Units (SFDU) Block.

These data quality statistics are reset before the next station contact. Since the data sent as a binary form, no sample product is reference in Appendix B.

4.3 SCIENCE OPERATION CENTER PRODUCTS AND DESCRIPTIONS

This section contains the interface products generated by the seven SOCs. These products are all sent to the LRO Mission Operations Center. The LOLA SOC transmits the LOLA Improved Gravity Model to the Flight Dynamics Facility, and to the LRO MOC, to assist in the improved orbit determination process. Each science center has its own unique subsection to define the specific products that the SOCs generate and send to the MOC.

For products that the SOCs generate, they are normally identified as either command files or specific instrument command sequences; these are command products that need to be sent to the MOC for uplink to the corresponding instrument.

4.3.1 (CRaTER-1) (DLRE-1) (LAMP-1) (LEND-1) (LOLA-1) (LROC-1) (MIRF-1) LRO Operations Activity Request

This is the LRO Operations Activity Request, which any SOC can use to identify routine requests of standard activities, such as commands, instrument procedures activation, ground support, or any other features that the SOC and LRO MOC have identified as possible routine operations that have been thoroughly checked and validated during the instrument integrations and test phase.

Each SOC generates the LRO Operations Activity Request and forwards the inputs to the LRO MOC. The MOT merges any SOC Activity Requests with command input for the spacecraft and orbiter health and safety commands and any specific maneuver commands based on mission profile support phases.

If the activity requests contains any commands, the commands in the file must be defined in the LRO Telemetry and Command Handbook – Database (431-HDBK-000053). If the command contains submnemonics, they must be specified with the command.

4-113

4.3.1.1 Product Details

Time interval	NA
File duration	NA
File or Data Generation Frequency	File delivered 48 hours prior to the requested activity, assuming the activity currently exists. Otherwise best effort based on time required to generate new procedures or test new instrument commands. Additional time required if SOC delivers via backup protocol
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC Backup is via Fax/email
Data Volume	Variable; based on contents, but nominally less that 1KBytes
Accuracy (if it applies)	NA
Other pertinent details	NOTE: The time interval will be relaxed if the request is based on an Orbiter anomaly

4.3.1.2 Format

The Activity Request File is intended to capture all information necessary to execute the activity described. All fields identified are required, if a field is not required enter "NA", this includes the initial submission of an activity request number field. The following sections describe each field. A linefeed character terminates each field. The following table identifies the file contents and provides additional information on the data entered for each field

Table 4-28 LRO Operations Activity Request Definitions

Field name	Field Characteristics
OAR Request Date	Date when the requestor submitted the OAR to the MOC; in yyyy-mm-dd format; where yyyy = 4 digit year designation ($2008 - 2013$) mm = 2 digit month designator ($01 - 12$), with leading zeros dd = 2 digit day of month designator ($01 - 31$) with leading zeros The OAR requestor is required to enter this field .
OAR Approved Date	Date when the MOT approves the OAR to the MOC; in yyyy-mm-dd format; where yyyy = 4 digit year designation (2008 – 2013) mm = 2 digit month designator (01 – 12), with leading zeros dd = 2 digit day of month designator (01 -31) with leading zeros The OAR requestor should enter NA for this field.

4-114

Field name	Field Characteristics
OAR Planned Execution Date	This field will contain the MOT identified expected date when the OAR is expected to execute; in yyyy-mm-dd format; where yyyy = 4 digit year designation ($2008 - 2013$) mm = 2 digit month designator ($01 - 12$), with leading zeros dd = 2 digit day of month designator ($01 - 31$) with leading zeros The OAR requestor should enter NA for this field.
OAR Status	This field contains the indication as to whether the MOT has accepted/rejected the OAR; the MOT completes this field The OAR requestor should enter NA for this field.
OAR Status Detail	This field contains the explanation if the MOT "rejects" OAR; otherwise, the MOT enters an NA The OAR requestor should enter NA for this field.
OAR Name	This field contains the name of the activity that the SOC is requesting. The field is a short description of the activity. When possible, this field should identify an existing LRO Flight Procedure Document. The OAR requestor is required to enter this field .
OAR Number	This field is intended for tracking purposes. The MOT assigns the OAR number when received. The MOT will assign numbers for both approved and unapproved OARs. The OAR requestor should enter NA for this field.
OAR Requested By	Name of person making the request. The LRO Operations Agreement with each organization will identify the individuals, a primary and backup. The MOT will only act on requests submitted by those individuals identified in the approved LRO Operations Agreement The OAR requestor is required to enter this field.
OAR Requestor Phone Number	The OAR Requestor must provide a telephone number in this field. As the MOT reviews and implements the request, the MOT will contact the requestor at the telephone number provided to answer any questions regarding the request. The OAR requestor is required to enter this field.
OAR Requestor Email Address	The Requestor must provide an email address in this field. The MOT will send an email to this address and all email addresses on record for this requesting organization, which verifies MOT receipt of the OAR. The MOT will send another email when the OAR is approved or rejected The OAR requestor is required to enter this field.
OAR Request Org	The Requesting organization indicates the affiliation of the person requesting the change The OAR requestor is required to enter this field.

4-115

Field name	Field Characteristics
OAR Type	 The activity type field gives an indication to the MOT as to which area is affected by the request. One of the following types: GROUND OPERATION – activity will affect only ground assets; e.g., requesting the MOT to generate a specific product INSTRUMENT OPERATION – activity will affect the instrument; e.g., sending a command, updating a FSW Table, downlinking a specific memory location SPACECRAFT OPERATION – activity will affect the spacecraft; e.g., sending specific commands, updating C&DH flight software or changing a table onboard the spacecraft The OAR requestor is required to enter this field. NOTE: The SOCs should NEVER use the SPACECRAFT OPERATIONS type. The only allowable values in the SOC-generated OAR are GROUND OPERATION or INSTRUMENT OPERATION.
OAR Execution Window	This field identifies the window for when the SOC requests execution of the requested activity.
	 The OAR requestor can supply one of the following valid inputs: NA NET yyyy-mm-dd; NLT yyyy-mm-dd where yyyy = 4 digit year designation (2008 – 2013) mm = 2 digit month designator (01 – 12), with leading zeros dd = 2 digit day of month designator (01 – 31) with leading zeros NOTE: The MOT will schedule the request at the next available opportunity if the requestor enters an 'NA' in this field.
OAR Constraints	 1:N lines of free form text describing constraints for executing activity, e.g. Only during eclipse The OAR constraints field identifies to the MOT limitations on when the activity may be executed. In most instances, flight procedure documents will identify constraints related to the operation. If additional constraints are required, they should be included in this field. The OAR requestor can either supply NA or enter a valid constraint data into this field.
OAR Sequence	 This field specifies the activity to be executed. The MOT will execute the activity according to the instructions provided. Instructions can be as simple as execute Flight Procedure XYZ at next available ground station contact. When the Flight Procedure already exists and is approved for operational use, the MOT will execute the procedure at the time specified. When it is necessary to execute the activity at a specific time, the Requestor should identify absolute times in the format of YYYY-DOY-HH:MM:SS for each step in the activity where applicable. All absolute times in this field shall be represented in Coordinated Universal Time (UTC). The OAR requestor is required to enter this field.

A sample LRO Operations Activity Request is provided in Appendix B, Figure B.3-1.

4-116

The following file-naming convention is used for files transmitted between the various SOC facilities and the LRO MOC. The filename consists of up to 22 characters; it also contains a three -character file extension name. There is an underscore (_) between the first four fields and a period (.) between the last two fields. The form of the filename is as follows:

<FILENAMEDESIGNATOR>_YYYY_DOY_NN.<file extension>

where	File name designator	=	[8 – 10 characters] CRAT_OAR for CRaTER DLRE_OAR for Diviner LAMP_OAR for LAMP LEND_OAR for LEND LOLA_OAR for LEND LOLA_OAR for LOLA LROC_OAR for LROC MINIRF_OAR for Mini-RF
	Date	=	YYYY_DOY; where YYYY = 4ASCII digits for year DOY - 3 ASCII digits for day or year NOTE: Date field identifies when SOC generated request
	Version	=	NN; where nn= 2 ASCII Digits to reflect the version number; first version = 01
	file extension	=	[3 characters] Standard file extension for all text input files received from SOC; txt to indicate that the file is text information

A sample LRO Activity Request file name for each of the SOCs is provided:

CRaTER SOC	CRAT_OAR_YYYY_DOY_NN.txt
DLRE SOC	DLRE_OAR_YYYY_DOY_NN.txt
LAMP SOC	LAMP_OAR_YYYY_DOY_NN.txt
LEND SOC	LEND_OAR_YYYY_DOY_NN.txt
LOLA SOC	LOLA_OAR_YYYY_DOY_NN.txt
LROC SOC	LROC_OAR_YYYY_DOY_NN.txt
MINI RF SOC	MINIRF_OAR_YYYY_DOY_NN.txt

4.3.2 (LOLA-5), (LROC-4), (MIRF-4) Target Request

This is file that contains target request from the specified SOC to perform imaging; the MOC uses this information to develop the attitude slew plan, which is eventually incorporated into the composite command load.

```
4-117
```

The SOC-generated target requests contain the information related to when the SOC is requesting an off-nadir slew, the corresponding slew angle and time durations at the off-nadir slew.

Time interval	NA; based on when off-nadir requests are scheduled
File duration	Up to 3-4 days of future target requests (current day to current day + 4)
File or Data Generation Frequency	Daily; NLT Noon local
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC
Data Volume	Variable; based on contents, but nominally less that 1KBytes
Accuracy (if it applies)	Target time and duration accurate to 1 second Off-nadir angle accurate to .01 degree
Other pertinent details	File delivered no later than noon, Eastern for scheduling the first day's command sequences into the command uplink

4.3.2.1 Product Details

4.3.2.2 Format

The file is a comma-delimited, ASCII file that contains the time of the requested target, a corresponding off-nadir angle, and a time duration for staying off-nadir; the fields are defined in the following table:

Field name	Field Characteristics
Timetag:	YYYY-DDD-HH:MM:SS, (Time is UTC time representation), where
year	YYYY => 4 ASCII digits of year $(2008 - 2013)$; followed by the hyphen (-)
day of year and	character
time of day	DDD => 3 ASCII digits for day of year $(1 - 366)$; followed by the hyphen (-)
	character
	HH:MM:SS => 6 ASCII digits, separated by the : (colon) character; used to
	represent the hours, minutes, and seconds of day
Off-nadir angle	7 ASCII Characters representing the targeted off-nadir angle; where
-	first character is a positive/negative sign indicator (+ or -)
	Next 2 characters represent the whole value of angle (0 to 90)
	Next character is the decimal separator
	Next 3 characters represent the decimal portion for the angle $(0 - 999)$
Off-nadir duration	Up to 5 ASCII Characters representing the duration (in seconds) for the off-nadir
	angle; where
	5 characters represent the duration time (in seconds) $(0 - 99999)$

The following file-naming convention is used for files transmitted between the LROC SOC and the LRO MOC. The filename consists of 25 characters; it also contains a three-character file extension name. There underscores (_) between the file name fields and a period (.) between the file name and file extension fields. The form of the filename is as follows:

<instrument id>_<file content>_<YYYYDOY>_<yyyydoy>_<version number>.<file extension>

4-118

where	instrument id	=	[4 characters] LROC for the LROC SOC LOLA for the LOLA SOC MINI for the MINI-RF SOC
	file content	=	[7 characters] Intent of the command load. TARGETS
	Start Date	=	YYYYDOY where YYYY => 4 ASCII digits of year (2008 – 2013) DOY => 3 ASCII digits for day of year (1 – 366) Note: DOY represents the start time of data within the file, not the file creation time
	Stop Date	=	yyyydoy where yyyy => 4 ASCII digits of year (2008 – 2013) doy => 3 ASCII digits for day of year (1 – 366) Note: DOY represents the stop time of data within the file, not the file creation time
	version number	=	[3 characters] V, followed by a two-digit version number. The initial version is 00, next is 01 up to 99.
	file extension	=	[3 characters] Standard file extension for all input files received from SOC; it will be named for the input file type: txt => for textual files
-			ROC generated target request is defined as

LROC_TARGETS_2009131_2009133_V00.txt.

Similarly, both MINI-RF and LOLA would have a similar file name concept with their specific instrument ID as noted in the above table (e.g., LOLA_TARGETS_2009147_2009149_V01.txt or MINI_TARGETS_2009150_2009152_V00.txt

A sample Target Request is provided in Appendix B, Figure B.3-2.

4.3.3 (DLRE-2) (LAMP-2) (LOLA-3) (MIRF-2) Instrument FSW Load

This file contains the FSW image and tables for the specified instrument; it contains the tested and verified files that the SOC will send on an as needed basis, as required to correct/update instrument Flight Software table and/or files.

The corresponding SOC facility generates its unique FSW load request and forwards the image file to the LRO MOC.

4-119

4.3.3.1 Product Details

Time interval	NA
File duration	NA; FSW Load contains no time frame data
File or Data Generation Frequency	As needed to meet needs of SOC group to upload new instrument loads
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC
Data Volume	Variable; based on contents, but nominally less that 64 KBytes
Accuracy (if it applies)	NA
Other pertinent details	File delivered 2-3 days prior to requested uplink to allow sufficient time to verify load against the FLATSAT simulator
	The DLRE FSW Load is rate buffered based on a parameter provided within the FSW Load file (Data Record #2); see below

4.3.3.2 Format

The Instrument FSW Load consists of the complete file/table image to be re-loaded, or a starting address, number of bytes to load and then the new table/file image portion.

In a load file, comments begin with either semi-colon (;) or hash (#) and continue to the end of the line. The MOC's T&C system ignores any blank lines and lines containing only comments. The first non-blank, non-comment line is the abstract record; this is copied to the formatted image load file but otherwise ignored. It is intended as a comment to identify the load file name.

Figure 4-7 provides a representation of each field within an Instrument FSW Load file. As noted in this figure there are several lines at the start of the load file that provide reference information related to the file name and other mission or instrument specific processing parameters. There may be several comment lines as listed in the figure, but these lines are not required and as noted above, the LRO T&C system will ignore these lines.

The remainder of the file contains the load image in a hexadecimal data form; the load data begins with the "X" and must contain an even number of hex data characters. The lines are terminated by the line feed (LF) character; the load image data lines can have an optional semicolon (;) character, which are used to provide any additional comments. The line then terminates with the LF character. The LAMP Flight SW Load contains an extra space after the last hexadecimal data character and just prior to the semi-colon and LF characters.

4-120

<File Name>
<Mission>, <ID>, <Date>, <Version>, <Source>, <Pkt Size>, <SWAP>, <Data Size>, <**Rate>**<Select Command>
<Inst Load Command>
<Commit Command>
;
X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 00 12 12 42 60 19 01 9D 9A 4A
X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 00 12 12 42 60 19 01 9D 9A 4A
X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 00 12 12 42 60 19 01 9D 9A 4A
X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 00 12 12 42 60 19 01 9D 9A 4A
X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 00 12 12 42 60 19 01 9D 9A 4A
X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 00 12 12 42 60 19 01 9D 9A 4A
X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 00 12 12 42 60 19 01 9D 9A 4A
X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 00 12 12 42 60 19 01 9D 9A 4A
X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 00 12 12 42 60 19 01 9D 9A 4A
X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 00 12 12 42 60 19 01 9D 9A 4A

Figure 4-7 Instrument FSW Load File Structure

4-121

LRO Ext. Sys. ICD for (LRGS)

Table 4-29 provides a more detailed explanation of each field as noted within the above figure.

4-122

Parameter Name	Parameter value
File name	The SOC-generated ASCII File name corresponding to Instrument FSW Load
	file as defined in the following table below
mission name	This field is ignored by the ITOS LOAD directive.
	Set to LRO
image ID	This field is ignored by the ITOS LOAD directive.
	Load ID
Date	Copied to the formatted image load file but otherwise ignored.
	UTC Time of the Load generation
Version	This field is ignored by the ITOS LOAD directive.
	Numerical value
Source	This field is ignored by the ITOS LOAD directive.
	This is the location for the Load such as RAM or EEPROM
	DLRE could set this field to the following possible values:
	"INRAM", "XRAM", and "SCANTABLES"
Pkt size	Maximum packet size. When the LOAD directive formats the raw image load
	file into packets, this is the maximum number of data bytes in each packet. The
	SOCs provide this value in a hexadecimal representation
	DLRE should set this field to a decimal value of 240 ; hex = $00F0$
swap	Indicates whether or not the LOAD directive should swap bytes when
	generating the formatted image load file. Byte swapping is only performed if
	this field has one of the values SWAPBYTES or UI085.
	NOTE: SWAPBYTES is the preferred value; the SOCs could use UI085, but it
	is a non-standard usage.
	The SOCs should sue the term NOSWAP to result in no byte swapping;
	however, any value other than SWAPBYTES or UI085 results in no byte
	swapping.
Data Size	An optional field, which gives the size in bytes of data items to be loaded; can
	be '1', '2','4'
	This option controls how the load program sets the ADDRESS or OFFSET and
	NUMBYTES fields in the load command.
D	For DLRE, this field is set to an empty value
Rate	Specifies the uplink rate at which the MOC will forward load directive
	commands to the spacecraft, to be forwarded to the instrument; in terms of 1
	command every <rate> Time (in seconds) in the event that the instrument can</rate>
	not receive the commands as fast as the MOC can send them.
	For example, for DLRE, this can be set to 3, which indicates that the MOC
	T&C system will send 1 DLRE FSW Command every 3 seconds until the file is
	completely uplinked.
Select Command	If required, the SOC should provide the correspond "Select Command" as
	identified from the LRO Command Database.
	If no select command is required, the SOC should set this field to NOSELECT
	DLRE should always set this field to NOSELECT

Table 4-29 Instrument FSW Load Directive File Data Definitions

4-123

Parameter Name	Parameter value
Instrument Load	This provides the "Instrument Load Command" mnemonic as defined within
Command	the LRO Command database
Commit Command	If required to commit the load, the field should contain the commit command as contained/formatted within the LRO command database. If no commit command is required set the field to NOCOMMIT DLRE should always set this field to NOCOMMIT
Instrument Data	X – All data load lines should start with the hexadecimal delimiter X. Each load line must contain an even number of hexadecimal characters Each line should be limited to 60 load file characters

The following file-naming convention is used for the files transmitted between the SOCs and the LRO MOC. The filename consists of 24 characters; it also contains a three-character file extension name. There are underscores (_) between the file name fields and a period (.) between the file name and extension fields. The form of the filename is as follows:

<instrument id>_<file content>_<YYYYDOY>_<version number>.<file extension>

where	instrument id	=	[4 characters] DLRE, LAMP, or LOLA, MINI
	file content	=	[4 or 7 characters] Intent of the instrument loads. LOAD to indicate it's a FSW Load for Mini-RF FSWLOAD; to indicate a FSW load for the other instruments, except for FSW Loads from the Diviner SOC
	Date	=	YYYYDOY
			DOY = Identifies the file creation date since this is a load file and does not contain any date/time related commands
	version number	=	[3 characters] V followed by a two-digit version number. The initial version is 00, next is 01 up to 99.
	file extension	=	[3characters] Standard file extension for all input files received from a SOC; it will be named for one of the following two input file type: bin; to represent a binary load file for the FSW load for LAMP, LOLA, and Mini-RF SOCs ld; to represent the File type for the DLRE FSW Load

The following paragraphs provide the sample file name concepts for CRaTER, LAMP, LEND, LOLA, LROC, and Mini-RF instrument loads and identify the corresponding Appendix B cross reference for the partial sample file.

A sample file name for a LAMP-generated FSW Load is

4-124

LAMP_FSWLOAD_YYYYDOY_Vnn.bin; a partial sample LAMP Instrument FSW Load is provided in Appendix B, Figure B.3-5.

A sample file name for a LOLA-generated FSW Load is

LOLA_FSWLOAD_YYYYDOY_Vnn.bin; a partial sample LOLA Instrument FSW Load is provided in Appendix B, Figure B.3-7

Sample file name is MINI Load YYYYDOY Vnn.bin

A sample Mini-RF Load File is provided in Appendix B, Figure B.3-12

DLRE follows a different file naming scheme, which provides a unique file name concept for each of the various flight software tables that they can modify. The DLRE scheme using the following concepts:

<instrument id="">_<file content=""><yyyydoy>_<version number="">.<file< th=""></file<></version></yyyydoy></file></instrument>
extension>

where	instrument id	=	[4 characters] DLRE
	file content	=	[7 characters] Intent of the instrument loads. FSWLOAD; to indicate a DLRE FSW load
	Table descriptor	=	[unlimited ASCII characters]; free format for field length or file descriptor length, etc. Provides the specific intent for which table the DLRE SOC plans to modify
	Date	=	YYYYDOY
			DOY = Identifies the file creation date since this is a load file and does not contain any date/time related commands
	version number	=	[3 characters] V followed by a two-digit version number. The initial version is 00, next is 01 up to 99.
	file extension	=	[3characters] Standard file extension for all input files received from a SOC; it will be named for one of the following two input file type:
			bin; to represent a binary load file for the FSW load for LAMP,
			LOLA, and Mini-RF SOCs ld; to represent the File type for the DLRE FSW Load
DIDD	• •		

DLRE provides two separate files to support both a flight software update and for a scan table update. Appendix B, Figure B.3-3, provides the sample concepts for each of these products.

The sample file name for the first DLRE FSW table load for the ramping patch load is identified as: DLRE_FSWLOAD_ramping_patch_2009090_V01.ld;

4-125

4.3.4 (LOLA-2) LOLA Improved Lunar Gravity Model

The LOLA Gravity Model is a file that contains the updated Lunar Gravity Model that the LOLA science team generates from its internal data processing. This file is sent to both the Flight Dynamics Facility and to the LRO MOC.

This data contains an improved lunar gravity model based on the continual processing of the correlated laser ranging one-way transmit times and using S-Band and other LOLA instrument data. FDF will use the improved Lunar Gravity Model to reprocess the orbit data and to create new definitive SPICE File and ephemeris information.

The Gravity model file shall consist of coefficients of a spherical harmonic expansion of the lunar potential up to resolution of (120×120) degrees. The LOLA SOC should ensure that the coefficients within the file are normalized; LOLA should also ensure that the updated lunar gravity constant and reference radius are included. LOLA should provide the title of the lunar gravity field. The LOLA SOC will not provide any corrections to the coefficients based on solid lunar tides.

4.3.4.1 Product Details

Time interval	NA
File duration	NA
File or Data Generation Frequency	LOLA generates on a best effort basis to approach every 2 months starting at L+2 Months
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC MOC scp to FDF via the FD Communications Server; the backup uses the FDPC (MOC performs the scp push)
Data Volume	Variable; based on contents, but approximately 2 KBytes
Accuracy (if it applies)	NA
Other pertinent details	NA

4.3.4.2 Format

The LOLA SOC creates the LOLA Improved Gravity Model File; this is an ASCII-formatted file based on the LOLA processing. This file includes new lunar gravity model data including the standard deviation values for the updated parameters.

The following file-naming convention is used for files transmitted between the LROC SOC and the LRO MOC. The filename consists of 26 characters; it also contains a three-character file extension name. There are underscores (_) between the file name fields and a period (.) between the file name and file extension fields. The form of the filename is as follows:

<instrument id>_<file content>_<YYYYDOY>_<version number>.<file extension>

4-126

where	instrument id	=	[4 characters] LROC	
	file content	=	GRAVMODEL – used to denote this is the newly calculated LOLA Gravity Model Information	
	Date	=	YYYYDOY based on UTC Timeframe	
			DOY = is the creation date	
	version number	=	[3 characters] V followed by a two-digit version number. The initial version is 00, next is 01 up to 99.	
	file extension	=	[3 characters] Standard file extension for all input files received from SOC; it will be named for the input file type: bsp; to represent a binary SPK file	
A sample LROC Activity Request file name for an ATS request is				
LOLA	LOLA_GRAVMODEL_YYYYDOY_Vnn.txt			

A sample Improved Lunar Gravity Model data file is provided as a reference in Appendix B, Figure B.3-6.

4.3.5 (LOLA-4) LOLA Processed OD Information

This file contains the LOLA–calculated Orbit Determination from data processing based on the telemetry data that LOLA receives from the LRO MOC as part of the real-time and post-pass s/c and instrument housekeeping and measurement telemetry, as well as the tracking data that the MOC provides to LOLA.

4.3.5.1 Product Details

Time interval	Data centered at 1 minute increments
File duration	File is a set of daily files
File or Data Generation Frequency	Files are created on an as-available basis
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC MOC scp to FDF via the FD Communications Server; the backup uses the FDPC (MOC performs the scp push)
Data Volume	Approximately 2 Mbytes per weekly file
Accuracy (if it applies)	50 m along track, 50 m across track, and less than 1 m radial
Other pertinent details	NA

4.3.5.2 Format

The LOLA Processed OD Information is a set of SPK formatted files based on the LOLA Orbit Determination calculations. The LOLA SOC creates these files on a weekly basis from the data gathered over the last seven days. This SPK is consistent with other OD-like SPK files previously discussed in the FDF section.

The filename consists of 20 characters; it also contains a three-character file extension name. There are underscores (_) between the file name fields and a period (.) between the file name and file extension fields. The form of the filename is as follows:

<instrument id>_<file content>_<YYYYDOY>_<version number>.<file extension>

where	instrument id	=	[4 characters] LOLA
	file content	=	SPK – used to denote this is a LOLA Processed SPICE SPK File
	Date	=	YYYYDOY based on UTC Timeframe
			DOY = start date corresponding to when new Processed OD Data is valid and not the creation date
	version number	=	[3 characters] V, followed by a two-digit version number. The initial version is 00, next is 01 up to 99.
	file extension	=	[3characters] Standard file extension for all input files received from SOC; it will be named for the input file type: bsp; to represent a binary SPK file
A	A second LOLA Dresses of OD Lafermatica file as the LOLA CDV WWWDOW Was here		

A sample LOLA Processed OD Information file name is LOLA_SPK_YYYDOY_Vnn.bsp

Since the LOLA Processed OD Information is a binary SPK file, no sample product is provided in Appendix B.

4.3.6 (LOLA-6) LOLA Processed Laser Ranging Data

This file contains the LOLA–processed one-way laser ranging fire time from data processing based on the telemetry that LOLA received from the LRO MOC as part of the real-time and post-pass s/c and instrument housekeeping and measurement telemetry.

4.3.6.1 Product Details

Time interval	Data centered at 1 second increments when laser ranging activities occur
File duration	File is 1 day of data Nominally from 0000 GMT to 0000 GMT
File or Data Generation Frequency	1 file per day
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC and to the CDDIS (LOLA does the scp "push" MOC scp to FDF via the FD Communications Server; the backup uses the FDPC (MOC performs the scp push)
Data Volume	Approximately 6 Mbytes per daily file
Accuracy (if it applies)	< 10 centimeters precision for the 1 second data interval (for each normal point)
Other pertinent details	NA

4.3.6.2 Format

The LOLA processed laser ranging information is consistent with the details as provided in the Consolidated Laser Ranging Data Format (CRD) document. This product consists of several "header" records that are used to provide general information, such as station, target, and start time; these "header" records are fixed format and similar in content to those of the Consolidated Laser Ranging Prediction Format; version 1.0 referenced document.

The file also contains "configuration" records, which contain an expanded version of data previously described by the System Configuration Indicator (SCI) and system CHange Indicator (SCH) fields.

The file contains the "data: records, which provide the laser transmit and receive times, and other highly dynamic information.

Both the configuration and data records are free format with spaces between entries.

The filename consists of 14 characters; it also contains a three-character file extension name. There are underscores (_) between the file name fields and a period (.) between the file name and file extension fields. The form of the filename is as follows:

<instrument id>_<YYYYMMDD>.<file extension>

where	instrument id	=	[5 characters] used to define the mission and the laser ranging station site for example LROLR
	Date	=	YYYYMMDD ; where YYYY = 4 digit year $(2009 - 2013)$ MM = 2 digit month $(01 - 12)$ DD = 2 digit day $(01 - 31)$
			4-129

file extension = [3characters] Standard file extension for a Normal Point generated file: npt;

A sample LOLA Processed laser Ranging data file corresponding to January 20, 2009 in normal point mode is LROLR_20090120.npt

Appendix B, Figure B.3-8 provides a sample version of this product.

4.3.7 (LOLA-7) Lunar Laser Retro-Reflector Event Information

This file contains the calculated times during which the LOLA instrument potentially could be damaged. When the LRO spacecraft enters an area near one of the lunar-based laser retro-reflectors, a lunar laser ranging experiment independent of the LRO project might send high-level laser pulses, which the LR telescope could receive. The file provides the estimated event start time and duration for which the LRO mission ops team will maneuver the HGA to avoid any harmful impact to the LOLA telescope electronics as a result of receiving a much higher laser energy level, which would damage the LOLA telescope electronics.

Time interval	Time interval is NA since the actual event times are based on LRO and lunar geometry conditions; they occur about twice a month and are clustered together
File duration	File contains the next 28 days of retro-reflector avoidance times
File or Data Generation Frequency	LOLA creates this file on a weekly basis after receipt of the FDF predicted ephemeris
Delivery method (real-time, SCP, FTP, etc)	LOLA SOC scp pushes the file to LRO MOC
Data Volume	Less than 1 Kbyte per weekly file
Accuracy (if it applies)	Event start times and durations are accurate to the second
Other pertinent details	Used internally by the MOC's MPS system to identify when the HGA is commanded to an offset so as to avoid the high-energy laser impulses.

4.3.7.1 Product Details

4.3.7.2 Format

The file will consist of 1-n lines of optional free-form Header data; this is used as information only and is not required for eventual ingest as a product. The file then contains N lines of data that provides the calculated event start and duration using the following format.

Event Start Duration

YYYY-DOY-HH:MM:SS,ddd

4-130

The event duration is blank padded to 3 ASCII characters/digits and there is a comma (,) character between the Event Start and the Event Duration fields.

In the event that the file does not contain any avoidance events, the file only contains the header rows information. This empty file concept would not contain any of the data rows listed above.

The filename consists of 25 characters; it also contains a three-character file extension name. There are underscores (_) between the file name fields and a period (.) between the complete file name and file extension. The form of the filename is as follows:

<SOC product id>_<Start Date><Stop Date>_<Version Number>.<file extension>

where	SOC product id	=	[5 characters] ; defaults to LOLA7
	Start Date	=	[7 ASCII digits], in the form of: YYYYDOY ; where YYYY = 4 digit for the start year $(2009 - 2013)$ DOY = 3 digits for the start day of year $(01 - 366)$
	Stop Date	=	[7 ASCII digits], in the form of: yyyydoy ; where yyyy = 4 digit for the stop year (2009 – 2013) doy = 3 digits for the stop day of year (01 – 366)
	Version Number	=	[3 ASCII digits/characters]; in the form of: Vnn; where nn = 2 ASCII digits to represent the version number for this file; first version =01, and increments by 1 for each new version that LOLA needs to create with the same start/stop information
	file extension	=	[3ASCII characters] standard file extension for a text file: txt;

A sample filename for the first generation of the LOLA Lunar Laser Retro-reflector Event file that corresponds to a start date of May 20, 2009 and covers the next 28 days of events is: LOLA7_2009071_2009099_V01.txt

Appendix B, Figure B.3-9 provides a sample version of this product.

4.3.8 (LR-1) Laser Ranging Schedule Information

This file contains the proposed times at which a laser ranging site has view of the LRO spacecraft and will support laser ranging activities. The laser ranging group creates this schedule of all laser sites that can support the LRO mission and perform laser ranging to the spacecraft.

4-131

4.3.8.1 Product Details

Time interval	Data provides AOS – LOS time intervals for each possible laser ranging site
File duration	File is valid for the upcoming week; contains 10 days of laser ranging schedule data
File or Data Generation Frequency	Created by the Friday before the week in question
Delivery method (real-time, SCP, FTP, etc)	LR FTP-es the file to the CDDIS LOLA SOC scp (pulls) the file from the CCDIS and then scp push to LRO MOC MOC DMS Scp pushes the file to the FDPC
Data Volume	Approximately 6 Kbytes per weekly file
Accuracy (if it applies)	Station AOS/LOS times are accurate to the second
Other pertinent details	NA

4.3.8.2 Format

The file contains the AOS/LOS times corresponding to when a particular laser site has view of the LRO antenna and is able to provide support to conduct laser ranging to the spacecraft.

Each line in the scheduling file will contain information regarding one scheduled pass for a system. Blank characters are used to separate the fields within the file. The following table describes each pass record contained in each line of the file:

Field name	Field Characteristics
LR Pad Identifier	[4 ASCII Digits] – represents the International Laser Ranging Service Pad IDthe following is the convention for Pad ID assignments to LR sites:7125 – GO1L, SLR2000 at Greenbelt, MD7080 – MDOL, McDonald Observatory at Ft. Davis, TX7110 – MONL, Monument Peak, California7941 – MATM, Matera Laser Ranging Observatory, Matera, Italy7810 – ZIML, Zimmerwald, Switzerland7825 – STL3, Mount Stromlo at Canberra, Australia7840 – HERL, Herstmonceaux, England7845 – GRSM, Grasse, France8834 – WETL, Wettzel, Germany7501 – HARL, Hartebeesthoek, South Africa (MOBLAS-6)7090 – YARL, Yarragadee, Dongara, Australia (MOBLAS-5)7308 – KOGC, Koganei, Tokyo, Japan
LR AOS Pass Date	7 ASCII Digits representing the scheduled start pass date in the form of YYYYDDD; where YYYY = start year designator (2008 - 2013) DDD - start day of year designator (1 - 366)

4-132

Field name	Field Characteristics				
LR AOS Pass Time	 5 ASCII Digits representing the scheduled start pass time; in the form of HH:MM first 2 character represent the start time in hours of the LR station contact (00 - 23) Next 2 characters represent the start time in minutes of the LR station contact (00 - 59) 				
LR LOS Pass Date	7 ASCII Digits representing the scheduled stop pass date in the form of YYYYDDD; where YYYY = start year designator (2008 - 2013) DDD - start day of year designator (1 - 366)				
LR LOS Pass Time	 5 ASCII Digits representing the scheduled stop pass time; in the form of HH:MM first 2 character represent the start time in hours of the LR station contact (00 – 23) Next 2 characters represent the start time in minutes of the LR station contact (00 – 59) 				
LR Station Qualifier	[4 ASCII Characters]; used to uniquely identify the LR station name;:GO1LNGSLR, Greenbelt, MDMDOLMcDonald Observatory, Ft. Davis, TXMONLMonument Peak, CaliforniaMATMMatera Laser Ranging Observatory, Matera, ItalyZIMLZimmerwald, SwitzerlandSTL3Mount Stromlo, Canberra, AustraliaHERLHerstmonceaux, EnglandGRSMGrasse, FranceWETLWettzel, GermanyHARLHartebeesthoek, South AfricaYARLYarragadee, Dongara, AustraliaKOGCKoganei, Tokyo, Japan				
Comments	[1 – 37 ASCII characters]; free form text used to provide specific information for LR stations regarding the scheduled LR station pass; such as: High Priority; could also be blank				

The following file-naming convention is used for files transmitted between the Laser Ranging group and the LRO MOC. The filename consists of 29 ASCII characters and digits. There are underscores () between each of he file name fields. The form of the filename is as follows:

<system id> <file content> <YYYYDOY> <YYYYDOY> <version number>

where system id = [2 characters] LR file content = [8 characters] schedule

4-133

Start Date	=	[8 characters] based on UTC Timeframe in the form of YYYYDOY; where
		YYYY = start year of corresponding first entry in the LR schedule DOY = start day of year corresponding to the first entry in the LR schedule
Stop Date	=	[8 characters] based on UTC Timeframe in the form of YYYDOY; where
		YYYY = start year of corresponding first entry in the LR schedule DOY = start day of year corresponding to the last entry in the LR schedule
version number	=	[1 ASCII Digit] N, where N is 1-9 to represent the possible versions.
For a first version of a la	ser r	anging schedule that is valid for the January 24 thru February 2,

2008, the sample Laser Ranging Schedule file name is identified as

LR_schedule_2008024_2008033_1

Appendix B, Figure B.3-10 provides a sample product reference.

4.3.9 (LROC-2) LROC Instrument Initialization Command Sequence

This file is one of eight initialization command loads that LROC SOC could use to initialize the LROC instrument during a startup sequence. This file is delivered electronically to the LRO MOC; the LRO MOC uplinks this file into the LROC directory location using the CFDP protocol. The instrument initialization command sequence is used to identify which set of command to use whenever the LROC instrument is initialized.

All commands in the file must be defined in the LRO Telemetry and Command Handbook – Database (431-HDBK-000053). If the command contains submnemonics, they must be specified with the command.

4.3.9.1 Product Details

Time interval	Command time sequences are variable; based on LROC identified startup concepts
File duration	NA; file is a set of relative-based time sequences for LROC initialization
File or Data Generation Frequency	LROC will generate up to 8 files Initially generated prelaunch (required 2 months prior to launch, preferred 4 months prior to launch After launch on an as-needed basis
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC

4-134

Data Volume	Variable; based on contents, but nominally less that 256 KBytes
Accuracy (if it applies)	NA
Other pertinent details	Files will be delivered on an as-needed basis File delivered 2-3 days prior to requested uplink to allow sufficient time to verify load against the FLATSAT simulator

4.3.9.2 Format

The LROC Instrument initialization command sequence provides the LROC instrument FSW load that the LROC SOC wants to load at startup; this file is a binary content that the instrument uses during the initialization process.

The operations team generates command that are used to load these files into the Orbiter's solid state recorder LROC directory structure. The following file-naming convention is used for files transmitted between the LROC SOC and the LRO MOC. The filename consists of 31 characters; it also contains a three-character file extension name. There are underscores (_) between the file name fields and a period (.) between the file name and file extension fields. The form of the filename is as follows:

<instrument id>_<file content>_<File Number>_<version number>.<file extension>

where	instrument id	=	[4 characters] LROC, followed by the underscore character (_)
	file content	=	[7 characters] Intent of the instrument loads. FSWLOAD; followed by the underscore character (_)
	File Number	=	[1 ASCII Digit] $n = 1$ thru 8 to identify the appropriate load file; followed by the underscore character (_)
	version number	=	[3 characters] V, followed by a two-digit version number. The initial version is 00, next is 01 up to 99.
	file extension	=	[3 characters] Standard file extension for all input files received from SOC; it will be named for the input file type: bin to indicate instrument command load

Sample LROC File names that correspond to the first iteration of the eight allowable command initializations sequences:

LROC_FSWLOAD_1_V00.bin LROC_FSWLOAD_2_V00.bin LROC_FSWLOAD_3_V00.bin;

...

4-135

LROC_FSWLOAD_8_V00.bin;

The LROC Instrument Initialization Command Sequence is a binary formatted file and as such, there is no sample product provided in Appendix B.

4.3.10 (LROC-3) LROC Daily Command Sequence

This file is the text version of daily LROC sequence that identifies times of imaging and other instrument-related command parameters. This file is delivered electronically to the LRO MOC, specifically the MPS element. This file is used for visual verification of the commands that the LROC SOC transmitted within the binary command load file referenced in the previous subsection.

All commands in the file must be defined in the LRO Telemetry and Command Handbook – Database (431-HDBK-000053). If the command contains submnemonics, they must be specified with the command.

4.3.10.1 Product Details

The LROC SOC will provide support through all mission phases.

Time interval	Variable based on WAC/NAC camera image commands
File duration	3-4 days of daily command sequences
File or Data Generation Frequency	daily
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC
Data Volume	Variable; based on number of command sequences, but nominally less that 256 KBytes
Accuracy (if it applies)	Times accurate to 1 second
Other pertinent details	File delivered no later than noon, Eastern for scheduling the first day's command sequences into the command uplink

4.3.10.2 Format

The LROC Daily Command Sequence is comma delimited, ASCII file that consists of a set of absolute time sequenced (in UTC) command mnemonics and any required sub-mnemonics. All commands in the file must be defined in the LRO Telemetry and Command Formats Handbook (431-HDBK-000052). If the command contains submnemonics, they must be specified with the command.

The fields are defined in the following table:

Field name	Field Characteristics
Timetag:	YYYY-DDD-HH:MM:SS where,
year	YYYY => 4 ASCII digits of year
day of year and	DDD => 3 ASCII digits for day of year
time of day	HH:MM:SS => 8 ASCII digits for hour, minutes, and seconds with a ":" delimiter.
	Note the "-" delimiter" separating YYYY, DDD, and HH:MM:SS.
Image Priority Number	1 digit integer number (1-5) with 1 being the highest and 5 being the lowest
Command with Sub-	Valid LROC Command and Sub-Mnemonics as defined within the T&C Formats
Mnemonic	Handbook
	CMD, SUB1=VAL1, SUB2=VAL2,
	There is a comma delimiter separating the command name and sub-mnemonic
	name(s)/value(s). Sub-mnemonic names are followed by a "=" and then the value
	of the sub-mnemonic. All command, sub-mnemonics, and sub-mnemonic values
	should be in capital letters except when specifying hex (notation is 0x)

The following table provides the current set of LROC identified commands. The command names and parameters presented in the tables may change over time; however, we will not modify this ICD. The official source of commands is the latest LRO command database, which the MOT delivers to the SOCs and MPS each time the MOT modifies the command database.

The "Required" column indicates whether the SOC needs to specify the sub-mnemonic. If the field reads "Exclude", the sub-mnemonic value is fixed to one number and therefore should not be included when using the corresponding command in a sequence/timeline. If the field reads "Include", the sub-mnemonic value must be set even if the operator wants to use the default value for the command. The "Discrete" column indicates whether the sub-mnemonic has discrete value definitions. If the field has an "X", the SOC must specify the discrete value and not the corresponding fixed value. For example, if the sub-mnemonic is assigned values of "OFF" and "ON" with converted values of 0 and 1 respectively, the SOC must use "OFF" or "ON" and not 0 or 1.

	Sub- Mnemonic	Required	Data Type	Discrete	Default Value	Min Value	Max Value
CMD	LRLOADFILE						
SUB	SADD	Exclude	U1			0x5C	0x5C
SUB	VERS	Exclude	U1			0x00	0x00
SUB	CMDID	Exclude	U1			0xF3	0xF3
SUB	PAD1	Exclude	U1			0x00	0x00
SUB	XID	Include	U12		0xAAAA		
SUB	FILENAME	Include	S1		"INIT"		

Table 4-30: Current Set of Available LROC Commands

	Sub- Mnemonic	Required	Data Type	Discrete	Default Value	Min Value	Max Value
SUB	PAD2	Exclude	U1			0x00	0x00
SUB	PAD3	Exclude	U1			0x00	0x00
SUB	PAD4	Exclude	U1			0x00	0x00
SUB	PAD5	Exclude	U1			0x00	0x00
SUB	PAD6	Exclude	U1			0x00	0x00
SUB	PAD7	Exclude	U1			0x00	0x00
SUB	PAD8	Exclude	U1			0x00	0x00
SUB	PAD9	Exclude	U1			0x00	0x00
SUB	PAD10	Exclude	U1			0x00	0x00
SUB	PAD11	Exclude	U1			0x00	0x00
SUB	PAD12	Exclude	U1			0x00	0x00
SUB	PAD13	Exclude	U1			0x00	0x00
SUB	PAD14	Exclude	U1			0x00	0x00
SUB	PAD15	Exclude	U1			0x00	0x00
SUB	PAD16	Exclude	U1			0x00	0x00
CMD	LRNAC						
SUB	SADD	Exclude	U1			0x5C	0x5C
SUB	VERS	Exclude	U1			0x00	0x00
SUB	CMDID	Exclude	U1			0xF4	0xF4
SUB	PAD	Exclude	U1			0x00	0x00
SUB	XID	Include	U12		0xAAAA		
SUB	TIME	Include	TIME44				
SUB	IMAGEID	Include	U1234		0xFFFFFFFF		
SUB	EXTIME	Include	U12		0		
SUB	LINES	Include	U12		1		
SUB	CPNDSEL	Include	U1		0		
SUB	RESERVED	Exclude	U1			0x00	0x00
SUB	TESTPAT	Include	U1	Х	NO_TEST		
SUB	SUM	Include	U1	Х	NO_SUM		
SUB	COMP	Include	U1	X	NO_COMPRESS		
SUB	NACSEL	Include	U1	Х	BOTH		
SUB	RSTLVLL	Include	U1		0		
SUB	RSTLVLR	Include	U1		0		
SUB	OFFAL	Include	U12		0		
SUB	OFFAR	Include	U12		0	1	
SUB	OFFBL	Include	U12		0		
SUB	OFFBR	Include	U12		0	1	

4-138

	Sub- Mnemonic	Required	Data Type	Discrete	Default Value	Min Value	Max Value
CMD	LRWAC						
SUB	SADD	Exclude	U1			0x5C	0x5C
SUB	VERS	Exclude	U1			0x00	0x00
SUB	CMDID	Exclude	U1			0xF5	0xF5
SUB	PAD	Exclude	U1			0x00	0x00
SUB	XID	Include	U12		0xAAAA		
SUB	TIME	Include	TIME44				
SUB	IMAGEID	Include	U1234		0xFFFFFFFF		
SUB	EXTIME	Include	U12		0		
SUB	FRMS	Include	U12		8		
SUB	CPNDSEL	Include	U1		0		
SUB	RESERVED	Exclude	U1			0x00	0x00
SUB	TESTPAT	Include	U1	Х	NO_TEST		
SUB	WACPWR	Include	U1	Х	NO_CHANGE		
SUB	POLAR	Include	U1	Х	NO_POLAR		
SUB	COMP	Include	U1	Х	NO_COMPRESS		
SUB	BAND	Include	U1	Х	ALL_BANDS		
SUB	IFRMTIME	Include	U1		0		

The following file-naming convention is used for files transmitted between the LROC SOC and the LRO MOC. The filename consists of 20 characters; it also contains a three-character file extension name. There are underscores (_) between the file name fields and a period (.) between the file name and file extension fields. The form of the filename is as follows:

<instrument id>_<file content>_<YYYYDOY>_<yyyydoy>_<version number>.<file extension>

- where instrument id = [4 characters] LROC
 - file content = [3 characters] Intent of the instrument loads. For LROC this is identified as DCS = Daily Command Sequence
 Start Date = YYYYDOY where YYYY => 4 ASCII digits of year (2008 2013) DOY => 3 ASCII digits for day of year (1 366) Note: DOY represents the start time of data within the file, not the file creation time

4-139

Stop Date	=	yyyydoy where yyyy => 4 ASCII digits of year (2008 – 2013) doy => 3 ASCII digits for day of year (1 – 366) Note: doy represents the stop date of the time of data within the file, not the file creation time
version number	=	[3 characters] V followed by a two-digit version number. The initial version is 00, next is 01 up to 99.
file extension	=	[3 characters] Standard file extension for all input files received from SOC; it will be named for the input file type: ict for instrument command timeline

A sample file names for the LROC generated daily command load file that corresponds to the first iterations of daily commands for 25 January 2009 through 28 January 2009 is LROC_DCS_2009025_2009028_V00.ict

A sample LROC Daily Command Sequence File is provided in Appendix B, Figure B.3-11.

4.3.11 (MIRF-3) Mini-RF Command Timeline

This file contains a set of command sequences that the MOC uses to create a daily load for uplink to the Mini-RF instrument.

All commands in the file must be defined in the LRO Telemetry and Command Handbook – Database (431-HDBK-000053). If the command contains submnemonics, they must be specified with the command.

4.3.11.1 Product Details

Time interval	Variable based on Mini-RF commands
File duration	24 hours
File or Data Generation Frequency	As needed whenever Mini-RF is operating
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC
Data Volume	Variable; based on number of command sequences, but nominally less that 256 KBytes
Accuracy (if it applies)	Times accurate to 1 second
Other pertinent details	File delivered no later than noon, Eastern for uplink within the same day

4.3.11.2 Format

The Mini-RF Command Timeline is a comma-delimited, ASCII file that consists of a set of absolute time sequenced (in UTC) command mnemonics and any required sub-mnemonics. All commands in the file must be defined in the LRO Telemetry and Command Formats Handbook (431-HDBK-000052).

The fields are defined in the following table	e defined in the following	g table:	
---	----------------------------	----------	--

Field name	Field Characteristics
Timetag:	YYYY-DDD-HH:MM:SS where,
year	YYYY => 4 ASCII digits of year
day of year and	DDD => 3 ASCII digits for day of year
time of day	HH:MM:SS => 8 ASCII digits for hour, minutes, and seconds with a ":" delimiter.
	Note the "-" delimiter" separating YYYY, DDD, and HH:MM:SS.
Command with Sub-	Valid Mini-RF Command and Sub-Mnemonics as defined within the T&C Formats
Mnemonic	Handbook
	CMD, SUB1=VAL1, SUB2=VAL2,
	There is a comma delimiter separating the command name and sub-mnemonic name(s)/value(s). Sub-mnemonic names are followed by a "=" and then the value of the sub-mnemonic. All command, sub-mnemonics, and sub-mnemonic values should be in capital letters except when specifying hex (notation is 0x)

The following table provides the current set of Mini-RF identified commands. The command names and parameters presented in the tables may change over time; however, we will not modify this ICD. The official source of commands is the latest LRO command database, which the MOT delivers to the SOCs and MPS each time the MOT modifies the command database.

The "Required" column indicates whether the SOC needs to specify the sub-mnemonic. If the field reads "Exclude", the sub-mnemonic value is fixed to one number and therefore should not be included when using the corresponding command in a sequence/timeline. If the field reads "Include", the sub-mnemonic value must be set even if the operator wants to use the default value for the command. The "Discrete" column indicates whether the sub-mnemonic has discrete value definitions. If the field has an "X", the SOC must specify the discrete value and not the corresponding fixed value. For example, if the sub-mnemonic is assigned values of "OFF" and "ON" with converted values of 0 and 1 respectively, the SOC must use "OFF" or "ON" and not 0 or 1.

Table 4-31: Available Mini-RF Commands

	Sub-Mnemonic	Required	Data Type	Discrete	Default Value	Min Value	Max Value
CMD	MRACTIVATE						
SUB	EOH	Exclude	U12			0x5A5A	0x5A5A
SUB	BOARD	Include	U1	Х		0x00	0xFF
CMD	MRDEACTIVATE						

4-141

	Sub-Mnemonic	Required	Data Type	Discrete	Default Value	Min Value	Max Value
SUB	ЕОН	Exclude	U12			0x5A5A	0x5A5A
CMD	MRPARAMDMP						
SUB	ЕОН	Exclude	U12			0x5A5A	0x5A5A
CMD	MRRESET						
SUB	ЕОН	Exclude	U12			0x5A5A	0x5A5A
CMD	MRSAFE						
SUB	ЕОН	Exclude	U12			0x5A5A	0x5A5A
CMD	MRSOFTBOOT						
SUB	ЕОН	Exclude	U12			0x5A5A	0x5A5A
CMD	MRSTANDBY						
SUB	ЕОН	Exclude	U12			0x5A5A	0x5A5A
CMD	MRCOLLECT						
SUB	ЕОН	Exclude	U12			0x5A5A	0x5A5A
SUB	COMMS_OPI	Include	U1			0	0xFF
SUB	COMMS_RX	Include	U1			0	0xF
SUB	COMMS_ENC	Include	U1	Х			
SUB	DIS_RESET	Include	U1	Х			
SUB	OPTION	Include	U1	Х			
SUB	APID	Include	U12			0x8C	0xBC
SUB	WAV_ID	Include	U12			0x00	0x3FF
SUB	OPI	Include	U1	Х			
SUB	CCSDS_SPW	Include	U12				
SUB	VCH_ATTN	Include	U1			0x00	0x3E
SUB	HCH_ATTN	Include	U1			0x00	0x3E
SUB	BURSTS	Include	U12			1	0x2710
SUB	EXP_ID	Include	U12			0	0xFFFF
SUB	RPF_DECFAC	Include	U1			0	0xF
SUB	PTP_INT	Include	U1			0	0x7
SUB	APF	Include	U1			0	0x7
SUB	BAQ	Include	U1			0x1	0xB
CMD	MRMEMDMP						
SUB	ЕОН	Exclude	U12			0x5A5A	0x5A5A
SUB	ТҮРЕ	Include	U1	Х			
SUB	ADDRESS	Include	U1234			0x00	0x003FFFFC
SUB	NUMBYTES	Include	U1234			0x00000004	0x00400000
CMD	MRCTRL						1
SUB	ЕОН	Exclude	U12			0x5A5A	0x5A5A

4-142

	Sub-Mnemonic	Required	Data Type	Discrete	Default Value	Min Value	Max Value
SUB	BOARD	Include	U1	Х		0x02	0x12
SUB	NUM_REG	Include	U12			0x01	0x02
SUB	ADD_DATA1	Include	U1234			0x00	0xFFFFFFFF
SUB	ADD_DATA2	Include	U1234			0x00	0xFFFFFFFF
CMD	MRWAVEDMP						
SUB	EOH	Exclude	U12			0x5A5A	0x5A5A
SUB	TABLE_ID	Include	U12			0x0000	0x03FF
CMD	MRCRC						
SUB	EOH	Exclude	U12			0x5A5A	0x5A5A
SUB	ТҮРЕ	Include	U1	Х			
SUB	CRC	Include	U12				
SUB	ADDRESS	Include	U1234			0x00	0x003FFFFC
SUB	NUMBYTES	Include	U1234			0x00000004	0x00400000
CMD	MRBIT						
SUB	EOH	Exclude	U12			0x5A5A	0x5A5A
CMD	MRDRXEXTBLREAD						
SUB	ЕОН	Exclude	U12			0x5A5A	0x5A5A
SUB	BOARD	Include	U1	Х			
SUB	NUM	Exclude	U1234			0x00000040	0x00000040
SUB	TBL_ID	Include	U1234			0x00000000	0x0000003
SUB	ADDR_OS	Include	U1234			0x00000000	0x00003E40
CMD	MRDECOMPRESS						
SUB	EOH	Exclude	U12			0x5A5A	0x5A5A
SUB	CRC	Include	U12				
SUB	FROM_TYPE	Include	U1	Х			
SUB	TO_TYPE	Include	U1	Х			
SUB	FROM_ADDRESS	Include	U1234			0x00004000	0x003FFFFC
SUB	TO_ADDRESS	Include	U1234			0x00004000	0x003FFFFC
SUB	NUMBYTES	Include	U1234			0x00000004	0x00400000
CMD	MRMEMCOPY						
SUB	ЕОН	Exclude	U12			0x5A5A	0x5A5A
SUB	FROM_TYPE	Include	U1	Х		0x01	0x03
SUB	TO_TYPE	Include	U1	Х			1
SUB	FROM_ADDRESS	Include	U1234			0x00000000	0x003FFFFC
SUB	TO_ADDRESS	Include	U1234			0x00000000	0x003FFFFC
SUB	NUMBYTES	Include	U1234			0x00000004	0x00400000
CMD	MRNOOP						

4-143

	Sub-Mnemonic	Required	Data Type	Discrete	Default Value	Min Value	Max Value
SUB	ЕОН	Exclude	U12			0x5A5A	0x5A5A
CMD	MRBOOTMEMCOPY						
SUB	ЕОН	Exclude	U12			0x5A5A	0x5A5A
SUB	FROM_TYPE	Include	U1	Х			
SUB	TO_TYPE	Include	U1	Х			
SUB	FROM_ADDRESS	Include	U1234			0x00000000	0x003FFFFC
SUB	TO_ADDRESS	Include	U1234			0x00000000	0x003FFFFC
SUB	NUMBYTES	Include	U1234			0x00000004	0x00400000
CMD	MRBOOTEXECUTE						
SUB	EOH	Exclude	U12			0x5A5A	0x5A5A
SUB	ADDRESS	Include	U1234			0x00000000	0x003FFFFC
CMD	MRBOOTMEMDMP						
SUB	EOH	Exclude	U12			0x5A5A	0x5A5A
SUB	ТҮРЕ	Include	U1	Х			
SUB	ADDRESS	Include	U1234			0x00	0x003FFFFC
SUB	NUMBYTES	Include	U1234			0x00000004	0x00400000
CMD	MRBOOTCRC						
SUB	EOH	Exclude	U12			0x5A5A	0x5A5A
SUB	ТҮРЕ	Include	U1	Х			
SUB	CRC	Include	U12				
SUB	ADDRESS	Include	U1234			0x00	0x003FFFFC
SUB	NUMBYTES	Include	U1234			0x00000004	0x00400000

The following file-naming convention is used for files transmitted between the Mini-RF SOC and the LRO MOC. The filename consists of 30 characters; it also contains a three-character file extension name. There are underscores (_) between the file name fields and a period (.) between the file name and file extension fields. The form of the filename is as follows:

<instrument id>_<file content>_<YYYYDOY>_<yyyydoy>_<version number>.<file extension>

where	instrument id	=	[4 characters] MINI for Mini-RF; followed by the underscore (_) character
	file content	=	[4 characters] Intent of the instrument loads. CMDTL to represent a Command Timeline File
	Start Date	=	YYYYDOY based on UTC Timeframe DOY = start date of data in file and not the creation date
	Stop Date		yyyydoy based on UTC Timeframe doy = stop date of data in file and not the creation date

4-144

version number	=	[3 characters] V followed by a two-digit version number. The initial version is 00, next is 01 up to 99.
file extension	=	[3 characters] Standard file extension for all input files received from a SOC; it will be named for the input file type: ict to represent instrument command timeline

For example, the first generation of the MINI-RF Command timeline for 09 Feb 2009 through 12 February 2009 would have a sample file name of MINI_CMDTL_2009040_2009043_V00.ict

A sample Mini-RF Command Timeline is provided in Appendix B, Figure B.3-13.

4.4 LRO FSWM Facility to LRO MISSION MOC INTERFACE PRODUCTS

This section contains the interface between the Flight SW Maintenance (FSWM) Facility and the LRO MOC; the FSWM facility resides at GSFC within the FSW Branch, Code 582. This interface is used to transfer the on-board FSW updates for table and memory loads to the Orbiter.

4.4.1 (FSWM-1) Orbiter FSW Load Files

This file contains the table or memory updates that are generated and verified by the FSW branch. These files are used to modify the on-board memory of the LRO single board computer. As an example, the FSWM group will generate calibration tables for uplink; these include the gyro cal, star tracker cal, and HGA cal tables. The FSWM group is responsible for the generation of other Orbiter-specific tables that support the on-board flight software.

Time interval	NA
File duration	NA
File or Data Generation Frequency	As needed whenever FSWM group identifies need to modify spacecraft FSW or as directed by the project to update a specific FSW table
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC
Data Volume	Variable; based on updated table
Accuracy (if it applies)	NA
Other pertinent details	File delivered 2-3 days prior to requested uplink to allow sufficient time to verify load against the FLATSAT simulator

4.4.1.1 Product Details

4.4.1.2 Format

The Orbiter FSW Load File contains the updated memory and is a binary formatted file. Since the file is a binary format, no sample product is shown in Appendix B.

4-145

The file name for this memory/table load is defined in the FSW User's Guide.

4.5 LRO MISSION OPERATIONS CENTER PRODUCTS AND DESCRIPTIONS

This section contains the interface products generated by the LRO MOC. In some cases, these products were originally created by other facilities, such as the LRO Flight Dynamics Facility or the stations and transferred to the LRO MOC. The LRO MOC then controls the delivery of these files to the science centers and the Planetary Data System (PDS) facility.

These subsections provide the details related to the products that the LRO MOC transmits to each individual science center.

4.5.1 (MOC-7) Daily Command Load Report

This file contains the textual version of the daily uplinked command load, which the LRO MOC sent to the LRO spacecraft.

Time interval	Variable based on integrated set of commands received from all groups
File duration	Next 24 hours of commands that the MOT approved for uplinked
File or Data Generation Frequency	Daily
Delivery method (real-time, SCP, FTP, etc)	MOC scp pushes to all SOCs
Data Volume	Variable; based on number of command sequences, but nominally less that 256 KBytes
Accuracy (if it applies)	Time accurate to 1 second
Other pertinent details	MOT signs approval of this textual version of the ATS Load file, which corresponds to the binary load file that the MOC uploads to the Orbiter

4.5.1.1 Product Details

4.5.1.2 Format

The Daily Command Load consists of the complete textual set of integrated commands sent to the LRO spacecraft. This Daily Command Load Report consists of the integrated spacecraft housekeeping commands to manage the LRO health and safety and the received set of instrument commands for any/all science centers. This command report defines the load for next day; based on operations team approval and signature of the corresponding binary load.

The daily command load report contains the following data items:

- Header Information
- Command Summary
- File Input Summary
- Error/Constraint Summary
- ATS Summary Report

4-146

The header informational area contains an overall meta-summary concept of the information contained within the remainder of the report. This data includes:

- Mission hard coded to LRO
- MPS Version version of the MPS
- Command DB Version Command database version
- Load File (Name) for example: SC_2009201_0005_A_V01.ATS
- Load Creation Time time the ATS load was generated
- Load Start Time (First Cmd) execution time of first command within the ATS load
- Load Stop Time (Last Cmd) execution time of last command within the ATS load, which will typically be the Buffer Switch command.
- ATS Buffer ATS buffer for which the ATS load is destined
- ATS Buffer Size (Bytes) maximum size of the ATS buffer, as determined from MPS configuration file
- Load Uplink Size (Bytes); Includes Overhead size, in bytes, of the load, including the Packet/Frame Overhead
- Load Data Size (Bytes) size, in bytes, of the load (Command data only)
- Number of ATS Commands # of commands within the load
- Number of Critical Commands # of critical commands within the load
- Estimated Time of Uplink @ 4 Kbps (Minutes) calculated time required to uplink file
- Number of Ka-Band Supports # of K-band supports for the ATS load period

The Command Summary will provide a counter for the number of commands, for each instrument and subsystem, contained with the ATS load. The bottom line of the summary report will provide a total number of commands for all instruments and subsystems.

The File Input Summary will identify the file names (including versions) of each input file that the mission planning system used in the generation of the ATS Load.

The Error/Constraint Summary will identify all errors or constraints that occurred in the generation process of the ATS Load, including an explanation of each error.

The Daily ATS Summary Report will provide a detailed listing of the commands included within the ATS load. The report will include the following information:

- Source identifies the source of the command for the applicable subsystem or instrument (e.g., LA_COMMAND, LO_COMMAND, etc...)
- Command Number ATS buffer command number

4-147

- Command Execution Time ATS command execution time (YYYY-DOY-HH:MM:SS)
- Command Mnemonic, Submnemonic, and Value Command mnemonics will be listed
 - When commands contain submnemonics, the submnemonic and the associated value should be reported on a separate line (below the command). The submnemonics should be indented (formatted) such that they are easily distinguished from commands.
- Activity/RTS ID identifies the Activity ID for which the command was generated. For RTS commands, the RTS ID and RTS Number should be included in this field.
- Command Description the command description, as extracted from the command database.
- Criticality Flag is a flag to support easy identification of critical commands. When a critical command is included in the ATS load (determined from the criticality flag from the command database), the field will contain a flag ("C") indicating the command is critical.

The LRO MOC uses the following file-naming convention for MOC-transmitted files. The filename consists of 21 characters; it also contains a three character file extension name. There are underscores (_) between the file name designators and there is a period (.) between the file name and file extension fields. The form of the filename is as follows:

<file designator="">_<yyyydoy>_<hhmm>_<ats buffer="">_<version number="">.<file extension></file </version></ats></hhmm></yyyydoy></file>			
where	File Name	=	21 Characters; used to identify the MOC generated file name and start date of data
	File Designator	=	[6 characters] to identify file (followed by underscore (_) SC
	Date	=	[7 characters], YYYYDOY represented in UTC format and followed by underscore(_);where YYYY => 4 ASCII digits of year (2008 – 2013) DOY => 3 ASCII digits for day of year (1 – 366) and where day of year indicates the first day for which data are represented
	Time	=	[5 characters], HHMM represented in time format and followed by underscore(_);where HH => 2 ASCII digits of hours (00 - 23) MM => 2 ASCII digits for minutes (00 - 59)
	ATS Buffer	=	[1 Character]; to identify the specific ATS Buffer = either A or B

4-148

	version number	=	[3 characters] V, followed by a two-digit version number. The initial version is 00, next is 01 up to 99.	3
	file extension	=	[3characters] Standard file extension for all input files received from a SOC; it will be named for the input file type: txt for text files	
r	le LRO Daily Co	mm	and Load Report file name for buffer A is identified as	

A sample LRO Daily Command Load Report file name for buffer A is identified as SC_2006301_1235_A_V01.txt

A sample Daily Command Load Report is provided in Appendix B, Figure B.4-1.

4.5.2 (MOC-2) SPICE SCLK Clock Correlation File

The SCLK kernel will be cumulative file for the entire mission. During the prime mission phase, the clock on board the LRO orbiter should be accurate enough that it should never need adjustment baring some anomaly or Orbiter reset, or leap-second adjustment. Another purpose for the kernel is to easily convert to other time systems UTC, TDB or TDT, etc. using the SPICE toolkit.

Time interval	Variable based on whenever MOT schedules Orbiter clock updates; could be up to seven entries per day
File duration	NA; file represents historical concepts for all clock correlations
File or Data Generation Frequency	As needed
Delivery method (real-time, SCP, FTP, etc)	MOC scp pushes to all SOCs
Data Volume	Variable; based on number of clock drift updates, but nominally less that 50 KBytes
Accuracy (if it applies)	Time accurate to 1 second
Other pertinent details	NA

4.5.2.1 Product Details

4.5.2.2 Format

The Clock Correlation File is an ASCII-formatted file; the SCLK kernel is to document the clock drift rate. This allows one to project where the orbiter clock will be (in relation to UTC) in the future very accurately. If 100 ms is accurate enough then the SOCs would not need to reference this kernel. Otherwise, the SOCs will need it or some other clock correlation data.

The file contents are delimited with the following terms:

\begin text and \begin data

4-149

The number of lines within each area is variable. The \begintext designator provides the LRO MOC to sufficiently document and provide commentary that allows the end-users, the SOCs, to understand the actual data. The \begindata designator signifies the start of Clock correlation data, such as the LRO SPICE ID, clock data, number and types of partitions.

The MOC uses the following file-naming convention for this file. The filename consists of 22 characters; it also contains a three character file extension name. There are underscores (_) between the file name fields and a period (.) between the file name and file extension fields. Since this file is transferred to the NAIF for eventual archive, the file name is entirely lower-case to support the NAIF-documented conventions.

The form of the filename is as follows:

<Mission Designator>_<File Type>_<YYYYDOY>_<version number>.<file extension>

where	File Name	=	[22 Characters]
	Mission Designator	=	[3 characters] to identify file (followed by underscore (_) lro
	File Type	=	[6 Characters] followed by the underscore (_) clkcor_
	Date	=	[7 characters], YYYYDOY; represented in UTC format and followed by underscore(_);where YYYY => 4 ASCII digits of year (2008 – 2013) DOY => 3 ASCII digits for day of year (1 – 366) and where day of year indicates when the file is generated
	version number	=	[3 characters] v, followed by a two-digit version number. The initial version is 00, next is 01 up to 99.
	file extension	=	[3characters] Standard file extension for the SPICE Clock Correlation File tsc
C 1	T.1 · 1	11	2000015 00 /

Sample File name is lro_clkcor_2009015_v00.tsc

The SCLK kernel is an ASCII formatted file that contains commentary fields to document the data representation fields. A sample Clock Correlation File is provided in Appendix B, Figure B.4-3.

4.5.3 (MOC-33) SPICE Event Kernel

The SPICE Event kernel identifies the various spacecraft, orbiter, or science events occurring on a nominal day or orbit boundary that are used to denote times of no science data capture events, such as the station keeping maneuvers.

4-150

Time interval	Variable based on integrated set of activities for all identified spacecraft events that resulted in science data outages
File duration	Contains the previous 7-days information that identifies when there were periods of no science data collection
File or Data Generation Frequency	Weekly, on Monday by noon-time Eastern
Delivery method (real-time, SCP, FTP, etc)	scp to all SOCs (MOC performs the scp push)
Data Volume	Variable; number of entries that identity no science data collection
Accuracy (if it applies)	Time accurate to 1 second
Other pertinent details	NA

4.5.3.1 Product Details

4.5.3.2 Format

The Events Kernel is a Binary-formatted file that consists of the complete set of event sequences (in sequential time-order) when any instrument is not collecting science data, such as during spacecraft station keeping maneuvers.

The LRO MOC uses the following file-naming convention for this file; the filename consists of 22 characters; it also contains a three character file extension name. There are underscores (_) between the file name fields and a period (.) between the file name and file extension fields.

A sample file name for the first generation of this data file is given as.

<File Designator>_<Start Date>_<Stop Date>_<Version>.<File Extension>

where	File Designator	=	[10 characters] token identifying the file; is
			"lro_events" to indicate this is the Events Kernel; followed by the underscore (_) character
	Start Date	=	[7 characters], YYYYDOY; represented in UTC format and followed by underscore(_);where YYYY => 4 ASCII digits of year (2008 – 2013) DOY => 3 ASCII digits for day of year (1 – 366) identifies the start date for the data contained within the file
	Stop Date	=	[7 characters], YYYYDOY; represented in UTC format and followed by underscore(_);where YYYY => 4 ASCII digits of year (2008 – 2013) DOY => 3 ASCII digits for day of year (1 – 366); identifies the stop date for the data contained within the file

4-151

version number	=	[3 characters] v, followed by a two-digit version number. The initial version is 00, next is 01 up to 99.		
file extension	=	[3characters] Standard file extension for the binary sequence LRO Event Kernel file		
		bes		
Ella marria la la accenta 2000015, 2000022,01 har				

Sample File name is lro_events_2009015_2009022_v01.bes

The SPICE Event Kernel is an binary file and as such, no sample product is provided in Appendix B.

4.5.4 (MOC-40) SPICE FK – Frame Kernels

The Frame kernel provides the definition and specification and the relationship between the various references frames (coordinate systems) used on the Orbiter; this includes reference mounting angles and reference matrices for various spacecraft HW and actuators, as well as the science instrument mounting alignments. Multiple LRO groups provide the inputs to create this file; these inputs are in the form of various project derived documentation.

4.5.4.1 Product Details

Time interval	NA; file is a set of reference frames
File duration	NA; no times in file
File or Data Generation Frequency	Possibly generated twice; once pre-launch and once soon after launch (post commissioning phase)
Delivery method (real-time, SCP, FTP, etc)	MOC scp pushes to all SOCs
Data Volume	Variable; based on number of command sequences, but nominally less that 25 KBytes
Accuracy (if it applies)	NA
Other pertinent details	NA

4.5.4.2 Format

The Frames Kernel File is an ASCII-formatted file that provides LRO body, sensor and instrument alignments and rotation angles to transform from one reference frame to another.

The MOC uses the following file-naming convention for this file. The filename consists of 22 characters; it also contains a two-character file extension name. There are underscores () between the file name fields and a period (.) between the file name and file extension fields.

A sample file name for the first generation of this data file is given as.

<File Designator>_<YYYYDOY>_<version number>.<file extension>

4-152

where	File Name	=	[22 Characters]
	File Designator	=	[10 characters] to identify file (followed by underscore (_) lro_frames
	Date	=	[7 characters], YYYYDOY; represented in UTC format and followed by underscore(_);where YYYY => 4 ASCII digits of year (2008 – 2013) DOY => 3 ASCII digits for day of year (1 – 366) and where day of year indicates when the file is generated
	version number	=	[3 characters] V, followed by a two-digit version number. The initial version is 00, next is 01 up to 99.
	file extension	=	[2characters] Standard file extension to identify this is an ASCII text file for the LRO Frames tf
Sample	Sample File name is lro_frames_2009015_v01.tf		

The SPICE Frames Kernel is an ASCII file and is shown in the Appendix B, Figure B.4-5.

4.5.5 (MOC-41) SPICE Predicted CK (Predicted S/C Orientation)

The SPICE Predicted CK file contains the predicted LRO spacecraft orientation with respect to its orbit.

Time interval	Variable; slew maneuver dependent Nominally every 2 seconds During maneuver, it is predicated on slew type and required frequency to support slew
File duration	Next 7 days of predicted s/c attitude data
File or Data Generation Frequency	Daily However, can vary based on maneuver support requirements; data generation frequency is listed in the FDF-GS&O Operations Agreement (451-MOA-002960) For normal mission ops, due NLT 4 pm local or 1 hour after receipt of all necessary input files, whichever time is later
Delivery method (real-time, SCP, FTP, etc)	MOC scp pushes to all SOCs
Data Volume	Approximately 12 MBytes
Accuracy (if it applies)	supports accuracy requirement for slew maneuvers
Other pertinent details	NA

4.5.5.1 Product Details

.

4.5.5.2 Format

The SPICE Predicted CK File is a binary formatted file generated by the SPICE Toolset. A sample file name for the first generation of this data file is given as

moc41_2009015_2009022_v01.bc for a SPICE-binary formatted file; this file type is platform independent.

The SPICE ID for LRO is -85, as assigned by JPL; the predicted CK file will be type 3; the instrument ID associated with the spacecraft body is listed as -85000. Since this is a binary formatted file, no sample product will be shown in Appendix B.

The SPICE CK file does support embedded ASCII comments that the MOC/AGS element will insert into the file; Appendix B, Figure B.4-6 provides a sample of these types of comments that can be included in any of these SPICE CK files (both predictive and definitive).

4.5.6 (MOC-42) SPICE Definitive CK (Definitive S/C Orientation)

The SPICE Definitive CK file contains the definitive LRO spacecraft orientation.

4.5.6.1 Product Details

Time interval	Frequency can be up to 5 Hz
File duration	Previous 24 hours of data; nominally set for 0000Z of the previous day to 0000Z of current day This is user-selectable time range
File or Data Generation Frequency	Daily; 1 file per day However, can vary based on maneuver support requirements; data generation frequency is listed in the FDF-GS&O Operations Agreement (451-MOA-002960) For normal mission ops (or when no maneuvers), NLT 4 pm local the day after the 24 hour dataset is delivered
Delivery method (real-time, SCP, FTP, etc)	MOC scp pushes to all SOCs MOC scp to FDF via the FD Communications Server; the backup uses the FDPC (MOC performs the scp push)
Data Volume	Approximately 27 Mbytes
Accuracy (if it applies)	nominally best case is 10 ⁻¹⁵ for no data interpolation across time intervals accuracy of the data quaternion (worst case) for a single quaternion element is approximately 10 ⁻⁸ (based on interpolating time if not from the same time interval)
Other pertinent details	NA

4.5.6.2 Format

The SPICE Definitive CK File is a binary formatted file generated by the SPICE Toolset. A sample file name for the first generation of this data file is given as moc42_2009014_2009015_v01.bc for a SPICE binary formatted file.

4-154

The SPICE ID for LRO is -85, as assigned by JPL; the predicted CK file will be type 3; the instrument ID associated with the spacecraft body is listed as -85000. Since this is a binary formatted file, no sample product will be shown in Appendix B.

The SPICE CK file does support embedded ASCII comments that the MOC/AGS element will insert into the file; Appendix B, Figure B.4-6 provides a sample of these types of comments that can be included in any of these SPICE CK files (both predictive and definitive). The spacecraft attitude system does not calculate any angular rates; the definitive spacecraft ck kernel only contains default angular rates using the SPICE Utility to create these values.

4.5.7 (MOC-43) SPICE Definitive HGA Orientation CK

This SPICE Definitive CK file contains the definitive orientation of the High-Gain Antenna with respect to the LRO spacecraft.

Time interval	Frequency can be up to 5 Hz
File duration	Previous 24 hours of data; nominally set for 0000Z of the previous day to 0000Z of current day This is user-selectable time range
File or Data Generation Frequency	Daily; 1 file per day However, can vary based on maneuver support requirements; data generation frequency is listed in the FDF-GS&O Operations Agreement (451-MOA-002960) For normal mission ops (or when no maneuvers), NLT 4 pm local the day after the 24 hour dataset is delivered
Delivery method (real-time, SCP, FTP, etc)	MOC scp pushes to all SOCs, except for DLRE and Mini-RF MOC scp to FDF via the FD Communications Server; the backup uses the FDPC (MOC performs the scp push)
Data Volume	Approximately 27 Mbytes
Accuracy (if it applies)	The HGA angle accuracy is approximately 10 ⁻⁷ (in radians)
Other pertinent details	Valid only for post-LOI mission phases

4.5.7.1 Product Details

4.5.7.2 Format

The SPICE Definitive HGA CK File is a binary formatted file generated by the SPICE Toolset. The data consists of the definitive HGA orientation as represented by a three-component Euler angle. The first component is set to a zero angle offset and the second and third Euler angles represent the HGA articulated angles.

A sample file name for the first generation of this data file is given as moc43_2009014_2009015_v01.bc for a SPICE Binary formatted file

The SPICE ID for LRO is -85, as assigned by JPL; the predicted CK file will be type 3; the instrument ID associated with the HGA reference is listed as -85020. Since this is a binary formatted file, no sample product will be shown in Appendix B.

4-155

The SPICE CK file does support embedded ASCII comments that the MOC/AGS element will insert into the file; Appendix B, Figure B.4-6 provides a sample of these types of comments that can be included in any of these SPICE CK files (both predictive and definitive). The spacecraft attitude system does not calculate any angular rates; the definitive High Gain Array ck kernel only contains default angular rates using the SPICE Utility to create these values.

4.5.8 (MOC-44) SPICE Definitive SA Orientation CK

This SPICE Definitive CK file contains the definitive orientation of the Solar Arrays with respect to the LRO spacecraft.

Time interval	At 5 Hz frequency interval
File duration	Approximately the previous 24 hours of data nominally set for 0000Z of the previous day to 0000Z of current day This is user-selectable time range
File or Data Generation Frequency	Daily; 1 file per day However, can vary based on maneuver support requirements; data generation frequency is listed in the FDF-GS&O Operations Agreement (451-MOA-002960) For normal mission ops (or when no maneuvers), NLT 4 pm local the day after the 24 hour dataset is delivered
Delivery method (real-time, SCP, FTP, etc)	MOC scp pushes to all SOCs, except for DLRE and Mini-RF MOC scp to FDF via the FD Communications Server; the backup uses the FDPC (MOC performs the scp push)
Data Volume	Approximately 27 Mbytes
Accuracy (if it applies)	The SA angle accuracy is approximately 10 ⁻⁷ (in radians)
Other pertinent details	Valid only for post-LOI mission phases

4.5.8.1 Product Details

4.5.8.2 Format

The SPICE Definitive SA CK File is a binary formatted file generated by the SPICE Toolset. The data consists of the definitive SA orientation as represented by a three-component Euler angle. The first component is set to a zero angle offset and the second and third Euler angles represent the SA articulated angles.

A sample file name for the first generation of this data file is given as moc44_2009014_2009015_v01.bc for a SPICE Binary formatted file.

The SPICE ID for LRO is -85, as assigned by JPL; the predicted CK file will be type 3; the instrument ID associated with the spacecraft body is listed as -85030. Since this is a binary formatted file, no sample product will be shown in Appendix B.

The SPICE CK file does support embedded ASCII comments that the MOC/AGS element will insert into the file; Appendix B, Figure B.4-6 provides a sample of these types of comments that can be included in any of these SPICE CK files (both predictive and definitive). The spacecraft

4-156

attitude system does not calculate any angular rates; the definitive Solar Array ck kernel only contains default angular rates using the SPICE Utility to create these values.

4.5.9 <u>Instrument – Spacecraft Housekeeping Data File</u>

This file contains the selected spacecraft telemetry parameters used by the instrument; it includes information such as attitude, spacecraft temperatures, etc. Once the SOC identifies the requested telemetry points, the corresponding APIDs will be extracted and archived in separate file for the instruments.

Time interval	Variable based on Orbiter Housekeeping Data collection filters and per APID	
File duration	Variable, based on ground commands to open/close files	
File or Data Generation Frequency	Variable based on file duration concepts above	
Delivery method (real-time, SCP, FTP, etc)	scp from the MOC to the various SOCs Files delivered as available and should be complete within twelve hours of receipt	
Data Volume	Variable; based on APIDs and storage rate	
Accuracy (if it applies)	NA; based on data mnemonics for specified APIDs	
Other pertinent details	Delivered within 24 hours of ground receipt The MOC transmits the LEND Spacecraft HK Data files to both the GSFC and University of Arizona SOCs The MOC will rate limit Mini-RF data file transfer to the Mini-RF SOC so as not to exceed to 400 kbps	

4.5.9.1 Product Details

4.5.9.2 Format

The Instrument – Spacecraft Housekeeping Data File consists of the complete set of LRO spacecraft telemetry APIDs that the specific SOC has identified to support its internal processing.

The Operations team sets the base file name on a daily basis using commands to set the base filename for each instrument directory. The instrument appends a sequence counter to the end of the filename. The file name can be up to 40 characters in length, contains the complete directory path information, and includes the file extension.

The LROC-specific file naming conventions are defined in Section 4.5.11

The file name conventions and standards are defined in the following table:

4-157

File Name qualifiers	Description
Instrument ID	NNNN is a 4 ASCII characters used to represent the specific instrument; where NNNN = > = CRAT for CRaTER Instrument data files = DLRE for the DLRE instrument files = LAMP for the LAMP instrument files = LEND for the LEND instrument files = LOLA for LOLA instrument files = LROC for the LROC instrument files = MIRF for the Mini-RF instrument files
Filetype Designation	NN is a 2 ASCII character used to identify that this is part of the spacecraft HK data file corresponding to the instrument = SC
YYYYDDD	YYYYDDD is a 7 character year and Day of year designations, such as YYYY => 4 character year designator (2008 – 2013) DDD => 3 character day of year designator (001 – 366)
serial counter	NNNNNN is a seven character sequentially incrementing number used to uniquely identify the files; (0000001 – 9999999)
file name extension	2 or 3 character designation used to identify the file type = .hk for instrument housekeeping data files = .sci for raw science data files

Table 4-32 SOC File Naming Conventions and Descriptions

The LRO MOC strips off the 64-byte header from the S/C housekeeping data file; the MOC runs a utility that selects the SOC-requested APIDs and stores them into a file. The file is a binary file that only contains the SOC-requested APID data packets.

The following table identifies the MOC-generated products, the contents and a sample file name concept.

Product ID	Contents	File Name
MOC-3	CRaTER – Spacecraft Housekeeping Data File	CRAT_SC_YYYYDDD_NNNNNN.hk
MOC-8	DLRE – Spacecraft Housekeeping Data File DLRE_SC_YYYYDDD_NNNNNN.hk	
MOC-12	LAMP – Spacecraft Housekeeping Data File LAMP_SC_YYYYDDD_NNNNNN.hk	
MOC-16	LEND – Spacecraft Housekeeping Data File LEND_SC_YYYYDDD_NNNNNN.hk	
MOC-20	LOLA – Spacecraft Housekeeping Data File LOLA_SC_YYYYDDD_NNNNNN.hk	
MOC-25	LROC – Spacecraft Housekeeping Data File	LROC_SC_YYYYDDD_NNNNNN.hk
MOC-28	Mini-RF – Spacecraft Housekeeping Data File	MIRF_SC_YYYYDDD_NNNNNN.hk

4-158

The Instrument – Spacecraft Housekeeping Data File is the collection of requested APIDs and contains the associated telemetry mnemonics in binary form. The MOC creates these files based on the SOC-requested APID; the MOC will document this information using the corresponding SOC Operations Agreement.

Since these files are a binary representation of the data, there is no sample product provided in Appendix B.

4.5.10 Instrument Housekeeping Data Files

This file contains the stored instrument housekeeping telemetry data.

Time interval	Variable based on Instrument APID generation
File duration	Variable; based on stored commands to open/close files
File or Data Generation Frequency	Variable based on file duration concepts above
Delivery method (real-time, SCP, FTP, etc)	scp from the MOC to the various SOCs Files delivered as available and should be complete within twelve hours of receipt
Data Volume	Variable; based on APIDs and storage rate
Accuracy (if it applies)	NA; based on data mnemonics for specified APIDs
Other pertinent details	Delivered within 24 hours of ground receipt The MOC transmits the LEND Instrument HK Data files to both the GSFC and University of Arizona SOCs The MOC will rate limit Mini-RF data file transfer to the Mini-RF SOC so as not to exceed to 400 kbps

4.5.10.1 Product Details

4.5.10.2 Format

The Instrument Housekeeping Data File consists of the complete set of instrument telemetry values. The Operations team sets the base file name on a daily basis using commands to set the base filename for each instrument directory. The LRO FSW appends a sequence counter to the end of the filename. The file name can be up to 40 characters in length, contains the complete directory path information, and includes the file extension.

The following table provides the product Identifiers, the contents, and a sample file name concept.

Product ID	Contents	File Name
MOC-4	CRaTER Housekeeping Data File	CRAT_YYYYDDD_NNNNNN.hk
MOC-9	DLRE Housekeeping Data File	DLRE_YYYYDDD_NNNNNN.hk
MOC-13	LAMP Housekeeping Data File	LAMP_YYYYDDD_NNNNNN.hk
MOC-17	LEND Housekeeping Data File	LEND_YYYYDDD_NNNNNN.hk
MOC-21	LOLA Housekeeping Data File	LOLA_YYYYDDD_NNNNNN.hk

4-159

MOC-26	LROC Housekeeping Data File	LROC_YYYYDDD_NNNNNN.hk
MOC-29	Mini-RF Housekeeping Data File	MIRF_YYYYDDD_NNNNNN.hk

The Flight Software system adds a 64-byte header to every file type before the first byte of instrument housekeeping data. This 64 byte header is defined in Section 4.6.4, specifically Table 4-9, of the LRO Telemetry and Command Formats Handbook (431–HDBK–000052).

These Housekeeping Data Files are a collection of requested APIDs and contains the associated telemetry mnemonics in binary form.

Since these files are a binary representation of the data, there is no sample product provided in Appendix B.

4.5.11 Instrument Raw Measurement Data Files

This file contains the raw measurement data files after CFDP processing. The Instrument Raw Measurement Data Files are a collection of image data files or collected science measurement telemetry data in a binary form as noted in the Instrument ICD. The MOC will electronically transfer the Instrument Raw Measurement Data Files to the appropriate SOC at the completion of the Ka-Band pass from the WS1 station contact and receipt within the MOC.

Time interval	Variable based on Science Instrument Data collection modes	
File duration	Variable; based on stored commands to open/close files for instruments except LROC. LROC files are stored on a per image basis	
File or Data Generation Frequency	Variable based on file duration concepts above	
Delivery method (real-time, SCP, FTP, etc)	scp from the MOC to the various SOCs Files delivered as available and should be complete within twelve hours of receipt	
Data Volume	Variable; based on Science Instrument Data collection mode	
Accuracy (if it applies)	NA; based on data mnemonics for specified APIDs	
Other pertinent details	Delivered within 24 hours of ground receipt The MOC transmits the LEND Instrument Raw Measurement Data files to both the GSFC and University of Arizona SOCs The MOC will rate limit Mini-RF data file transfer to the Mini-RF SOC so as not to exceed to 400 kbps	

4.5.11.1 Product Details

4.5.11.2 Format

The Raw Measurement Data Files is a collection of requested APIDs and contains the associated telemetry mnemonics or an image file in a binary form. As such, there are no sample products provided in Appendix B.

LROC and Mini-RF use the SpaceWire interface on the orbiter to transfer science data from their instruments to the C&DH flight software for storage. These instruments efficiently use this

4-160

interface by inserting variable length fill bits into this data stream to ensure that the SpaceWire data packets are always full.

When the MOC receives these instrument files, the MOC performs additional file processing to remove the SpaceWire fill bits, which recreates the original instrument file, as it existed onboard the Orbiter. The MOC regenerates the corresponding instrument science meta-summary file that provides the correct file statistics for the new file size and the new MD5 checksum calculation.

The Flight Software system adds a 64-byte header before the first byte of the raw instrument science data. This 64 byte header is defined in Section 4.6.4, specifically Table 4-9, of the LRO Telemetry and Command Formats Handbook (431–HDBK–000052).

The Operations team sets the base file name on a daily basis using commands to set the base filename for each instrument directory. The LRO FSW appends a sequence counter to the end of the filename. The file name can be up to 40 characters in length, contains the complete directory path information, and includes the file extension.

LROC controls their specific file naming convention since they provide the file name as part of an input command load that the MOC receives and uplinks to the spacecraft. The file naming convention still adheres to the 40 character file name limitations as previously referenced as part of the FSW Users' Guide.

For the Wide Angle Camera (WAC) and both Narrow Angle Cameras (NAC), the file name convention adheres to the following naming scheme, which is taken form the input commands: TTTTHHHHHHHH.ext; where

TTTT (3-4 characters) = NACL or NACR or WAC

8 characters Image ID represented as a Hex ID

ext = 3 character extension; raw (sci) for raw image files

The following table identifies the MOC-generated products, the contents and a sample file name concept.

Product ID	Contents	File Name
MOC-5	CRaTER Raw Measurement Data File	CRAT_YYYYDDD_NNNNNN.sci
MOC-10	DLRE Raw Measurement Data File	DLRE_YYYYDDD_NNNNNN.sci
MOC-14	LAMP Raw Measurement Data File	LAMP_YYYYDDD_NNNNNN.sci
MOC-18	LEND Raw Measurement Data File	LEND_YYYYDDD_NNNNNN.sci
MOC-22	LOLA Raw Measurement Data File	LOLA_YYYYDDD_NNNNNN.sci
MOC-27	LROC Left Narrow Angle Camera Image Data File LROC Right Narrow Angle Camera Image Data File	naclHHHHHHHH nacrHHHHHHHH
MOC-39	LROC Wide Angle Camera Image Data File	wacHHHHHHHH
MOC-31	Mini-RF Raw Measurement Data File	MIRF_YYYYDDD_NNNNNN.sci

4-161

4.5.12 (MOC46 – MOC60) Meta Summary Reports

The Meta Summary Report contains a transaction id, filename (source and destination), file size, checksum, outcome (success/failure), and reason of failure if outcome was failure, file completion map, and start/end time. All characters in the report are ASCII.

4.5.12.1 Product Details

Time interval	NA
File duration	NA; file corresponds to the Instrument HK or Raw Measurement Data Files and provides the meta-data over that time duration
File or Data Generation Frequency	1 file per Instrument HK or Raw measurement Data File
Delivery method (real-time, SCP, FTP, etc)	scp from the MOC to the various SOCs
Data Volume	Less than 1 KByte
Accuracy (if it applies)	NA
Other pertinent details	Delivered within 24 hours of ground creation The MOC transmits the LEND Meta Summary Report files to both the GSFC and University of Arizona SOCs

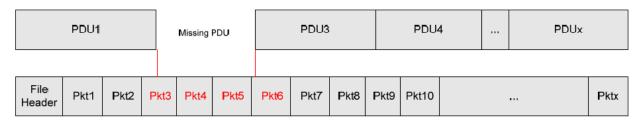
4.5.12.2 Format

The LRO Ground System receives Orbiter and instrument files during the high rate Ka-Band supports. The WS1 station and MOC DPS systems perform data processing, which closes the loop for CFDP transfers. Under nominal conditions, the receiving DPS receives complete files that have no data gaps; missing packets should not occur on LRO since CFDP will continue to request the missing data packets. However there are possible contingency scenarios which could result in the Orbiter sending the files in Class 1 (Unreliable Mode) or the ground system could cancel the file downlink transaction before completing.

The meta-summary file provides an overview of the file statistics information for the corresponding science housekeeping or measurement data files. The metasummary file nominally provides file transaction information for how the sender and receiver coordinated the file transfer and identifies if the receiver entity received the file in totality or if the receiving entity only received the file with some missing packets.

The receiving Data Processing System (DPS) creates the corresponding metasummary file based on how it received the transmitted science file and if it encountered any unrecoverable errors during the file transfer. To identify the location of any missing data, the DPS will use the contents of the file completion map to record where the missing data segments occur in the file.

The LROC and Mini-RF science instruments send their data over the SpaceWire, so these science instrument files will have special considerations when the DPS element encounters data gaps as a result of either a Class 1 file transfer or a partial file transfer. After the DPS element


4-162

encounters the first gap, it provides no additional processing on the file since there is no easy way for the DPS element to resync based on the SpaceWire headers. Any additional DPS processing could corrupt the file. In this instance, both the LROC and Mini-RF science data meta-summary report is different from the other instruments as noted in

Table 4-34, which provides a description of the Meta-Summary Report contents specifically tailored for LROC and Mini-RF science data files.

For other science files that the ground system receives without any errors or missing gaps, the meta-summary report (nominal meta-file contents) only contains the first 12 items. For processing option 1 (default mode), the next two items (13 and 14) are added to the meta-summary file. For processing option 2 (removal of partial packets and zero filled data), three additional items (15-18) are added to the meta-summary file report.

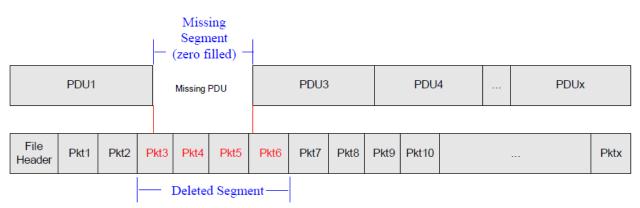

Figure 4-8 shows the missing data gaps that are a result of extra MOC processing to remove full packets associated with missing downlinked data

Figure 4-8 Missing Segment Boundaries

The normal DPS processing flow whenever it encounters missing segments is to replace the missing segments with zeros. The partial packets are left in the data file. Based on the specific file contents and formats, the partial packets may, or may not, contain packet headers; this packet header concept is valid only for instruments that create packetized data. Following this processing the DPS creates the corresponding metasummary file, which provides the details on the missing segments. IF desired, the DPS element can perform additional processing on the data file to remove partial packets and inserted zeros in the file. There are two options available:

- 1. Transfer the file to the SOC with the inserted zeros in the file where missing data gaps exist. This option is the default processing mode.
- 2. Remove the partial packets from the file and remove the zero-fill data, which DPS originally inserted. If the SOC chooses this option, then Figure 4-9 would provide an example of the file with the deleted packets.

Figure 4-9 Missing and Deleted Segment Boundaries

Table 4-33 provides a description of the Meta-Summary Report contents

ltem	Field name	Field Characteristics
1	Transaction ID	Identification number of the transaction.
2	Source file name	Complete pathway and file name of the source file.
3	Destination file name	Complete pathway and file name of the destination file.
4	Transaction Started	Date/Time when CFDP started (YYYY-DDD-HHMMSS)
5	Class	Numeric representation association with the CFDP transfer (=1 or 2)
6	File Size	Size of file in bytes.
7	Temp file name	Complete pathway and file name for the temporary file location; primarily for data file recovery purposes should a transaction fail or get hung in the middle of a transfer
8	Transaction completed	Date/Time when CFDP completed (yyyy-ddd-hhmmss)
9	CFDP File Checksum	Standard Checksum of data contained in file.
10	MD5 File Checksum	Linux checksum value
11	File transfer status	Success or Unsuccessful and Failure condition (e.g., cancel requested).
12	File complete percentage	Numerical value used to identify percentage of downlinked file successfully retrieved. = 100.0000 or nn.mmmm, where nn is number between 0 – 99 and mmmm is the decimal number value between 0000 and 9999
13	Number of gaps in file (Note1)	Numeric value for number of data gaps.
14	File completion map ^(Note1)	Number of missing byes = numeric value, such as 565583678 byte offset for the first gap, such as 11133123. File deletion map line should occur for each missing gap
15	Processed File Size (Note2)	Provides the size of the new file created as a result of processing (Number of Bytes)
16	Processed File MD5 Checksum ^(Note2)	This checksum will be used to verify file integrity when the file is transferred between ground system elements
17	File Completion Percentage (Note2)	For modified files (means a file that has gone through an extra level of processing to manipulate data received from the original file); applicable only to processed files:
		[(Total original file size – SUM (Deleted Segment size))/Total original file size] *100
18	File Deletion Map ^(Note2)	For modified files:
		List of deleted data segments, including the number of bytes deleted and the offset at where that occurred. Byte count starts at byte 0. File deletion map line should occur for each missing gap
	These two fields are only present if the egments (reference Figure 4-8).	downlinked file did not complete successfully; e.g., Only has missing

Table 4-33 Meta-Summary Report Description

4-165

Item	Field name	Field Characteristics
Note2	Note2: These fields are only present, above and beyond Note1, if the downlinked file did not complete successfully	
and th	and the MOC deleted other data segments associated with the missing data (reference Figure 4-9)	

For LROC and Mini-RF science files, the LRO MOC only delivers complete files. As part of the processing on the LROC and Mini-RF science files, the meta-summary files contain two additional fields that provide complete file statistics after the removal of the fill bits. This utility regenerates the corresponding instrument science meta-summary file that provides the correct file statistics for the new file size and the new MD5 checksum calculation.

4-166

Table 4-34 provides a description of the Meta-Summary Report contents specifically tailored for LROC and Mini-RF science data files:

4-167

Item	Field name	Field Characteristics
1	Transaction ID	Identification number of the transaction.
2	Source file name	Complete pathway and file name of the source file.
3	Destination file name	Complete pathway and file name of the destination file.
4	Transaction Started	Date/Time when CFDP started (YYYY-DDD-HHMMSS)
5	Class	Numeric representation association with the CFDP transfer (=1 or 2)
6	File Size	Size of file in bytes.
7	Temp file name	Complete pathway and file name for the temporary file location; primarily for data file recovery purposes should a transaction fail or get hung in the middle of a transfer
8	Transaction completed	Date/Time when CFDP completed (yyyy-ddd-hhmmss)
9	CFDP File Checksum	Standard Checksum of data contained in file.
10	MD5 File Checksum	Linux 16-byte checksum value
11	File transfer status	Success or Unsuccessful and Failure condition (e.g., cancel requested).
12	File complete percentage	Numerical value used to identify percentage of downlinked file successfully retrieved. = 100.0000 or nnn.mmmm, where nnn is number between 0 - 100 and mmmm is the decimal number value between 0000 and 9999
13	File Size No Fill	Recalculated file size after SpaceWire fill bits are removed.
14	MD5 File Checksum No Fill	Linux 16-byte checksum value after the DOPS element has removed the SpaceWire fill bits

Table 4-34 Meta-Summary Report Description for LROC and Mini-RF Science Files

A sample file name for the first generation of this data file has the following convention:

<downlinked filename>.<file extension>

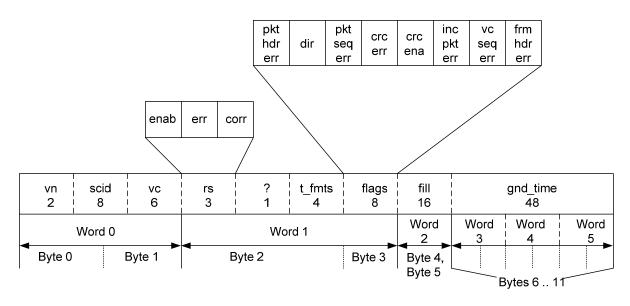
where	downlinked filename	=	Name of file that is downlinked from orbiter, name is same as the orbiter copy.
	file extension	=	[4 characters] meta

The following table identifies the MOC-generated products, the contents and a sample file name concept.

4-168

Product ID	Contents	File Name
MOC-46	CRaTER Housekeeping Meta Summary File	CRAT_YYYYDDD_NNNNNN.hk.meta
MOC-47	CRaTER Raw Measurement Meta Summary File	CRAT_YYYYDDD_NNNNNN.sci.meta
MOC-48	DLRE Housekeeping Meta Summary File	DLRE_YYYYDDD_NNNNNN.hk.meta
MOC-49	DLRE Raw Measurement Meta Summary File	DLRE_YYYYDDD_NNNNNN.sci.meta
MOC-50	LAMP Housekeeping Meta Summary File	LAMP_YYYDDD_NNNNNN.hk.meta
MOC-51	LAMP Raw Measurement Meta Summary File	LAMP_YYYYDDD_NNNNNN.sci.meta
MOC-52	LEND Housekeeping Meta Summary File	LEND_YYYYDDD_NNNNNN.hk.meta
MOC-53	LEND Raw Measurement Meta Summary File	LEND_YYYDDD_NNNNNN.sci.meta
MOC-54	LOLA Housekeeping Meta Summary File	LOLA_YYYYDDD_NNNNNN.hk.meta
MOC-55	LOLA Raw Measurement Meta Summary File	LOLA_YYYYDDD_NNNNNN.sci.meta
MOC-56	LROC Housekeeping Meta Summary File	LROC_YYYYDDD_NNNNNN.hk.meta
MOC-57	LROC Narrow Angle Camera Image Meta	naclHHHHHHHH.meta
	Summary File	nacrHHHHHHHH.meta
MOC-58	LROC Wide Angle Camera Image Meta Summary File	wacHHHHHHHH.meta
MOC-59	Mini-RF Housekeeping Meta Summary File	MIRF_YYYYDDD_NNNNNN.hk.meta
MOC-60	Mini-RF Raw Measurement Data File	MIRF_YYYYDDD_NNNNNNN.sci.meta

The following three figures in Appendix B provide the various samples for meta-summary files: Meta-summary Report for successful completion (No gaps) – Figure B.4-8


Meta-Summary Report for incomplete files (Missing Data Segments) - Figure B.4-9

Meta-Summary Report for incomplete files (Deleted Data Segments) - Figure B.4-10

Meta-Summary Report for LROC Science files (No Missing Data Segments) - Figure B.4-11

4.5.13 <u>Real-time VC0 housekeeping data</u>

The LRO MOC forwards real-time data to each of the science centers. The LRO MOC's telemetry and command system (e.g., ITOS) attempts to initiate a TCP/IP socket connection with each of the SOCs at the start of a real-time pass. In the event of a socket connection failure, ITOS attempts to reconnect up to three times. If the connection request does not work, there is no real loss of data since the real-time data will always be transferred within a subsequent VC1 data stream in a latter station contact. The real-time VC0 consists of the requested APIDs (or the entire VC0 data stream). ITOS uses a 12-byte ITOS annotation header to provide basic quality statistics. The following figure and table provides the data layout for this 12-byte header and provides the field descriptor information.

Figure 4-10 ITOS Annotation Header Layout

The fields, represented within this figure are defined with the following table:

Field	Word	Bit(s)	Description
frame version	0	0-1	Version field from CCSDS transfer frame hdr.
frame s/c ID	0	2-9	Spacecraft ID from CCSDS transfer frame hdr.
frame VC ID	0	10-15	Virtual channel ID from CCSDS transfer frame hdr.
Reed-Solomon enabled	1	0	If set, Reed-Solomon error detection and correction enabled.
Reed-Solomon error	1	1	If set, uncorrectable Reed-Solomon error(s) encountered.
Reed-Solomon corrected	1	2	If set, the Reed-Solomon code corrected one or more errors.
reserved	1	3	
time format	1	4-7	Defines time code format; list of values are: '0' = none '1' = PB1 code '2 - 3' = reserved '4' = PB4 code '5 - 7' = reserved '8' = relative TIME42, a time in CCSDS Unsegmented Code (CUC) '9' = absolute TIME42, a date in CUC, default for annotation headers created by ITOS '10 - 15' = reserved
packet header error	1	8	If set, packet header extracted from frame with uncorrectable error.

Table 4-35 ITOS Annotation Header Field Definitions

4-170

Field	Word	Bit(s)	Description
data direction reversed	1	9	If set, data received in reverse bit order.
packet sequence error	1	10	If set, this packet's sequence count is not the successor or the previous packet with the same application ID on the same VC.
frame error	1	11	If set, uncorrectable error detected in one or more frames from which this packet was extracted.
frame error enabled	1		12 if set, frame error checking was enabled.
incomplete packet	1	13	If set, packet is incomplete, and filled to it's indicated length beginning at <i>`fill location'</i> .
VC sequence error	1	14	If set, a transfer frame from which this packet was extracted was not the successor of the previous frame on the same virtual channel.
frame header error	1	15	A frame from which this packet was extracted had an incorrect version or spacecraft ID.
fill location	2	0-15	Byte offset from the end of the packet primary header of packet fill data, if ` <i>incomplete packet</i> ' is set.
ground received time	3-5	0-15	Ground received time extracted from frame wrappers in format defined by ` <i>time format</i> ' above.

The following table identifies the MOC-generated real-time data products, which the LRO MOC sends to the various SOCs. Since these are real-time socket connections, there are no associated file names.

Product ID	Contents
MOC-6	CRaTER Real-time VC0 Housekeeping Data
MOC-11	DLRE Real-time VC0 Housekeeping Data
MOC-15	LAMP Real-time VC0 Housekeeping Data
MOC-19	LEND Real-time VC0 Housekeeping Data
MOC-23	LOLA Real-time VC0 Housekeeping Data
MOC-24	LROC Real-time VC0 Housekeeping Data
MOC-32	Mini-RF Real-time VC0 Housekeeping Data

4.5.13.1 Product Details

Time interval	Variable based on Orbiter VC0 Data collection filters and per APID
File duration	NA
File or Data Generation Frequency	NA
Delivery method (real-time, SCP, FTP, etc)	Real-time socket from MOC to each SOC
Data Volume	Variable
Accuracy (if it applies)	NA
Other pertinent details	The MOC delivers real-time data to both GSFC LEND SOC and to the University of Arizona LEND SOC Best effort to deliver data in real-time

4.5.13.2 Format

The Real-time VC0 housekeeping data consists of the set of telemetry mnemonics from the SOC requested list of APIDs; the SOC identifies which specific VC0 APIDS or the complete VC0 data stream it wishes to receive in the real-time socket connection.

The Real-time VC0 housekeeping data is a collection of APIDs and contains the associated telemetry mnemonics in a binary form. As such, there is no sample product provided in Appendix B.

4.5.14 (MOC-73) Archived CRaTER VC0 Telemetry File

The LRO MOC creates an archived version of the CRaTER real-time telemetry feed only in the event that the MOC/ITOS system failed to connect to the CRaTER SOC during any real-time station contact. The MOT creates this file and transfers it to the CRaTER SOC during the next operational day.

4.5.14.1 Product Details

Time interval	Variable based on Orbiter VC0 Data collection filters and per APID
File duration	1 file per station contact
File or Data Generation Frequency	Created by MOT next business day File ONLY created if the real-time feed failed with CRaTER SOC
Delivery method (real-time, SCP, FTP, etc)	scp to the CRaTER SOC
Data Volume	Variable, based on Orbiter VC0 Data collection filters and per APID
Accuracy (if it applies)	NA
Other pertinent details	NA

4.5.14.2 Format

The LRO MOC creates this file based on the SOC-requested APIDs associated with the original VC0 real-time data connection. This data file contains the identical set of APIDS that the MOC would have transferred during the real-time connection as noted for MOC product, MOC-6 – CRaTER Real-time VC0 Housekeeping Data. This product contains the ITOS 12-byte ITOS annotation header to provide basic quality statistics; Section 4.5.13 provides the details for this annotation header.

This file name conforms to the following file name convention:

<File Designator>_<YYYYDOY_HHMM>.<file extension>

where	File Name	=	[19 Characters]
	File Designator	=	4 Characters, with the following designation: CRAT
	YYYYDOY	=	[12 characters], YYYYDOY-HHMM; represented in UTC format of the station AOS, where YYYY => 4 ASCII digits of year (2008 – 2013) DOY => 3 ASCII digits for day of year (1 – 366), followed by the underscore (_) character HHMM => 4 ASCII digits of the Hours and Minutes of the station AOS (0000 – 2359)
	file extension	=	[3characters] Standard file extension for all input files received from a SOC; it will be named for the input file type: vc0 for a VC0 Archive file

A sample file name that corresponds to a failed CRaTER real-time connection from January 15, 2009 with a station AOS of 1235 GMT is CRAT_2009015_1235.vc0

The Archived CRaTER VC0 Telemetry File is a collection of APIDs and contains the associated telemetry mnemonics in a binary form. Since this file contains data only in a binary form, there is no sample provided in Appendix B.

4.5.15 (MOC-30) Mini-RF Operations Opportunity

This file contains potential targets of operations opportunity (time periods) for which the Mini-RF instrument could be commanded on to take science measurements.

Time interval	NA, provides specific time intervals for possible Mini-RF operations
File duration	1 week
File or Data Generation Frequency	Wednesday, noon time local for the next operational week, which begins on the Monday
Delivery method (real-time, SCP, FTP, etc)	MOC scp pushes to the Mini-RF SOC
Data Volume	Variable, based on number of possible Mini-RF Operations (< 1 Kbytes)
Accuracy (if it applies)	NA
Other pertinent details	NA

4.5.15.1 Product Details

4.5.15.2 Format

The Mini-RF Operations Opportunity is an ASCII formatted file that contains selected time ranges in which the Mini-RF instrument could be command on to take science data.

The file is a comma, separated ASCII formatted file with no other blanks or white spaces between fields. The following table provides the file format details related to this product

Field name	Field Characteristics
TOO Indication	Either 3 or 6 ASCII characters that the MOT uses to identify if Mini-RF has a possible target of opportunity or if the MOT has deleted this potential opportunity = ADD; indicates that Mini-RF can use the following times = DELETE; indicates the following times are no longer available
Start Time	17 ASCII Digits and characters to identify start time, in the form of: YYYY-DDD-HH:MM:SS where, YYYY => 4 ASCII digits of year (2009 – 2013); followed by (-) DDD => 3 ASCII digits for day of year (1 – 366); followed by (-) HH:MM:SS => 8 ASCII digits for hour, minutes, and seconds with a ":" delimiter.
Stop Time	17 ASCII Digits and characters to identify start time, in the form of: YYYY-DDD-HH:MM:SS where, YYYY => 4 ASCII digits of year (2009 – 2013); followed by (-) DDD => 3 ASCII digits for day of year (1 – 366); followed by (-) HH:MM:SS => 8 ASCII digits for hour, minutes, and seconds with a ":" delimiter.

The LRO MOC uses the following file-naming convention for this file. The filename consists of 19 characters; it also contains a three character file extension name. There are underscores (_) between the file name fields and there is a period (.) between the file name and file extension fields. The form of the filename is as follows:

4-174

<File Designator>_<YYYYDOY>_<yyyydoy>_<version number>.<file extension>

where	File Name	=	[19 Characters]		
	File Designator	=	7 Characters, with the following designation: MINITOO		
	YYYYDOY	=	[7 characters], YYYYDOY; that indicate the start date, followed by underscore(_);where YYYY => 4 ASCII digits of year (2009 – 2013) DOY => 3 ASCII digits for day of year (1 – 366) and where the day of year indicates the first day for which there might be an opportunity;		
	yyyydoy	=	[7 characters], yyyydoy; that represent the stop date, followed by underscore(_);where YYYY => 4 ASCII digits of year (2008 – 2013) DOY => 3 ASCII digits for day of year (1 – 366) and where the day of year indicates the last day for which there might be an opportunity;		
	version number	=	[3 characters] V, followed by a two-digit version number. The initial version is 00, next is 01 up to 99.		
	file extension	=	[3characters] Standard file extension for all input files received from a SOC; it will be named for the input file type: txt for text files		
A samp	A sample File name is MINITOO_2009015_2009022_V00.txt				

A sample product is provided in Appendix B, Figure B.4-7

4.5.16 (MOC-62) RTS Command Load Report

This file contains the textual version of the relative time sequenced (RTS) uplinked command load, which the LRO MOC sent to the LRO spacecraft.

4.5.16.1 Product Details

Time interval	Variable based on integrated set of relative time sequenced commands associated with the specified RTS identifier
File duration	NA
File or Data Generation Frequency	NA, as needed to modify a specified RTS
Delivery method (real-time, SCP, FTP, etc)	MOC scp pushes to SOCs that modify a relative Time Sequence Command Load
Data Volume	Variable; based on number of command sequences, but nominally less that 256 KBytes
Accuracy (if it applies)	Time accurate to 1 second
Other pertinent details	NA

4.5.16.2 Format

The RTS Command Load Report consists of the complete textual set of integrated RTS commands associated with a specific RTS Sequence number. This command report defines the load; based on operations team approval and signature of the corresponding binary load.

The RTS Report will include a Header to provide the following information:

- Mission hard coded to LRO
- MPS Version version of the MPS
- Command DB Version Command database version
- Load File (Name) files name SC_145_DeltaVOps_V01.RTS NOTE: When an RTS load with the same table number and file description as a previously defined RTS, the mission planning system increment the version number.
- Load Creation Time time the RTS load was generated
- RTS Slot RTS buffer, or table ID for the RTS Load
- RTS Buffer Size (Bytes) maximum size of the RTS buffer, as determined from MPS configuration file (should always be 300 bytes, since RTS load will include padding)
- Load Data Size (Bytes) size, in bytes, of the load (Command data only)
- Number of RTS Commands # of commands within the load
- Number of Critical Commands # of critical commands within the load
- Estimated Time of Uplink @ 4 Kbps (Minutes) calculated time required to uplink file

The Command Summary will provide a counter for the number of commands, for each instrument and subsystem, contained with the RTS load. The bottom line of the summary report will provide a total number of commands for all instruments and subsystems.

4-176

The Error/Constraint Summary will identify all errors or constraints that occurred in the generation process of the RTS Load. In addition to the error/constraint, the summary will also provide an explanation of each error, including the mitigation of the error/constraint.

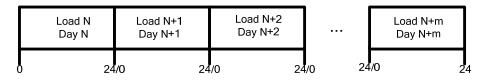
The RTS Summary Report will provide a detailed listing of the commands included within the RTS load. The report will include the following information (Note that the fields slightly differ from ATS Summary Report):

- Command Number RTS buffer command number
- Relative Offset Time the relative offset time for each RTS command (HH:MM:SS), relative to previous command
- Command Mnemonic, Submnemonic, and Value Command mnemonics will be listed When commands contain submnemonics, the submnemonic and the associated value should be reported on a separate line (below the command). The submnemonics should be indented (formatted) such that they are easily distinguished from commands. In addition, an asterisk (*) should be inserted in the command number field for command submnemonics (e.g., there is no command number associated with submnemonics).
- Command Description the command description, as extracted from the command database.
- Criticality Flag is a flag to support easy identification of critical commands. When a critical command is included in the RTS load (determined from the criticality flag with the command database), the field will contain a flag ("C") indicating the command is critical.

The LRO MOC uses the following file-naming convention for MOC-transmitted files.

There are underscores (_) between the file name designators and there is a period (.) between the file name and file extension fields. The form of the filename is as follows:

where	File Name	=	SC_145_DeltaV_V01.txt
	File Name Details	=	Stored Command (SC); RTS # (e.g., 145); RTS Description (e.g., DeltaV); Version (e.g., V01)
	file extension	=	[.txt] identifies that this file is an ASCII RTS Command Report text file.


For example, a sample file name for a Relative Time Sequence Command Report is identified as: SC_145_DeltaV_V01.txt. A sample RTS Command Load is provided in Appendix B, Figure B.4-2.

4-177

4.5.17 (MOC-71) Data Recorder Model Report

The Data Recorder Model, which provides an analysis of spacecraft data recorder, predicts the memory margin based on instrument operational concepts, SOC inputs, ground contacts, and external reports. The purpose of the model is to predict, based on planned activities and available Ka-Band supports, the amount of recorder memory (number of remaining bits) available for LROC images.

To illustrate the recorder model, take for example the following scenario using Figure 4-11.

Figure 4-11: Recorder Model Scenario

The Orbiter is currently executing Load N on Day N. The MOT must provide a recorder model report to the LROC SOC on the morning of Day N, which span multiple days (N+1 through N+m). The MOT will generate this report based on a variable duration, which is based upon how much information the MOT has available at that time.

Once receiving the report, the LROC SOC will use it to generate the daily command sequence, which will span the same duration as the recorder model report. After receiving the LROC daily command sequence and the other daily products, the MOT can build the ATS load for day N+1.

Time interval	NA; file contents are based on LRO Orbit designations					
File duration	Corresponds to the time interval for the LROC Daily Command Sequence; for example if LROC sends a command timeline for (Wed – Fri), then the Data Recorder Model provides information for the same time interval					
File or Data Generation Frequency	The file is generated on a daily basis or whenever LROC transmits a revised LROC Daily Command Sequence					
Delivery method (real-time, SCP, FTP, etc)	MOC scp pushes the file to the LROC SOC					
Data Volume	Variable					
Accuracy (if it applies)	NA					
Other pertinent details	Used by MOT personnel Product is delivered to LROC for SOC review and analysis					

4.5.17.1 Product Details

4.5.17.2 Format

The file contains detailed information regarding the contents of LROC data recorder unit. The file is an ASCII-formatted file that contains multiple lines that correspond to header and data information. The file will contain the following fields:

4-178

Field name	Field Characteristics
File Content Header Information	One line of ASCII information that identifies the Product ID and the Product name: Product ID defaults to MOC-71 Product name defaults to Data Recorder Model There is a space between these 2 fields; the line ends with a Carriage Return/Line Feed
Instruments per VR Number	provides 5 lines of ASCII information. The first two lines provide a default identifier for the word Instruments; the second line provides the "underlining" aspect for the word Instruments The next 3 lines provide the VR to Instrument assignments, in the form of: VRn = <free ascii="" form="" text="">; specifically: VR1 = LROC/Mini-RF VR2 = CRaTER/DLRE/LAMP/LEND/LOLA VR3 = Spacecraft Housekeeping</free>
VR Capacity	The capacity of the selected VR, in Gigabits; provides 3 lines of ASCII information to provide capacity for each Virtual Recorder: VR1 = 390.32 Gbits VR2 = 14.00 Gbits VR3 = 8.00 Gbits
Ka-Band Supports	The number of Ka-band supports for the given day; identified by a header row followed by 1:N lines of data, in the form of: WOTIS Ka Band PassesMinutesRate (Mbps) 100(AOS Date/time) – (LOS Date/time) MM.nn100
Avg. LRO NAC Image Size Avg. LRO WAC Image Size	The average size of an LROC NAC image: 2.3042 Gbits The average size of an LROC WAC image: 0.0000 Gbits
Next Header Row Definition Area	Provides additional column header information for the remaining data lines, which provide information on the following details Commanding (Gbits) and Available memory (Gbits); followed by an ASICC set of underscores

Table 4-36 Data Recorder Memory Model Description

Field name	Field Characteristics
Detailed Column Details	Additional column headers separated by ASCII blanks; another row follows that provides a set of underscore characters for each column header.
	After this set of 2 lines of column headers, the remainder of the report consists of ASCII digits that provide the details as identified in the following rows:
Asc Node Time	14 ASCII Digits and characters in the form of: YYYYDOY.HHMMSS; where, YYYY = 4 digits of year DOY = 3 digits for the day of year HHMMSS = 6 digits to represent the hours, minutes, and seconds of the ascending node time; there is a period (.) separator between the YYYDOY and the HHMMSS
Orbit Number	1-5 ASCII Digits that represent the orbit number; starts with 1 and monotonically increase for each ascending node crossing
MRF	Either a single – or an ASCII set of digits (NN.mmm, in Gbits) to represent the corresponding amount of generated Mini-RF data taken during that orbit
LROCNAC	Either a single – or an ASCII set of digits (NN.mmm, in Gbits) to represent the corresponding amount of generated LROC NAC images taken during that orbit
LROCWAC	Either a single – or an ASCII set of digits (NN.mmm, in Gbits) to represent the corresponding amount of generated LROC WAC images taken during that orbit
KBandDL(Gbits)	Either a single – or an ASCII set of digits (NNN.mmm, in Gbits) to represent the corresponding amount of data that the orbiter can potential downlink during the orbit for all associated Ka- Band station contacts
LROC IMAGES AVALABLE	3 ASCII Digits used to represent the available remaining number of LROC images, in the form of: nnn, where nnn can be any positive number from 1 to 168

Field name	Field Characteristics
VR1(390.32)	Amount of memory and percentage available for this partition in the form of: NNN.mmmm (dd%); where NNN.mmmm provide 3 ASCII digits before the decimal point and 4 ASCII digits after the decimal point for the available VR1 memory (in Gbits) dd are 2 ASCII digits to represent the VR1 percentage remaining
VR2(14.00)	 Amount of memory and percentage available for this partition in the form of: NNN.mmmm (dd%); where NNN.mmmm provide 3 ASCII digits before the decimal point and 4 ASCII digits after the decimal point for the available VR2 memory (in Gbits) dd are 2 ASCII digits to represent the VR2 percentage remaining
VR3(8.00)	 Amount of memory and percentage available for this partition in the form of: NNN.mmmm (dd%); where NNN.mmmm provide 3 ASCII digits before the decimal point and 4 ASCII digits after the decimal point for the available VR3 memory (in Gbits) dd are 2 ASCII digits to represent the VR3 percentage remaining

A sample file name for a Data Recorder Model file has the following convention:

<File Name Descriptor>_<Start Date & Time>_Stop Date & Time>.<file extension>

where	File Name Descriptor	=	[21 ASCII Characters] Recorder_Memory_Model, followed by the hyphen (-) field separator
	Start Date & Time	=	[14 ASCII digits and characters]; with the following convention: [4 ASCII Digits for Start Year] (2009 – 2013) [3 ASCII Digits for start DOY] (001 – 366), followed by an underscore (_) [6 ASCII Digit Time Stamp] in hhmmss format, followed by an hyphen (-). (Note: The Start Date/Time identify the start of the data within the memory model file

4-181

Stop Date & = [14 ASCII digits and characters]; with the following convention: [4 ASCII Digits for Start Year] (2009 – 2013) [3 ASCII Digits for start DOY] (001 – 366), followed by an underscore (_) [6 ASCII Digit Time Stamp] in hhmmss format, followed by an hyphen (-). (Note: The Stop Date/Time identify the end of the data within the memory model file

file extension = [.txt] Identifies a text file

For example, a sample file name for the Data Recorder Model that the MOC created, which corresponds to a valid memory model for a date range of 24 September 2009 to 30 September 2009 is identified as: Recorder_Memory_Model-2009267_000000-2009273_221717.txt.

A sample Recorder Memory Model is provided for reference in Appendix B as Figure B.4-21.

4.6 MOC PRODUCTS TO STATIONS

The following sections identify the interfaces sent by the LRO MOC to the various ground stations supporting the LRO mission. Nominally, these interfaces are used to transmit command from the LRO MOC to the corresponding station. The command structure that the LRO MOC uses is dependent upon the station that is scheduled to be the interface for sending commands to the LRO spacecraft. The following conventions are used by the LRO MOC to support the interface with each of the corresponding stations:

- EOS Ground Message Header for commanding through either WS1, USN stations or the Space Network using TDRSS uplink
- SLE Command structure for interfacing with DSN stations

The EOS Ground Message header is 24 bytes long and has the following data structure as identified in Figure 4-12;

4-182

Table 4-37 provides a reference definition for the fields contained within the EOS Ground message Header. After the 24-byte header, the commands are formatted into the variable length Command Length Transmission Units (CLTUs).

	Ground Message Header										
Message Type (1)	Fill/ Spare (1)	Source Id (1)	Destination Id (1)	Fill/ Spare (1)	Message GMT (7)	SC ID (2)	Seq. # (2)		Message Length (2)	Fill/ Spare (4)	CLTU (variable)

Figure 4-12 EOS Ground Message Header

4-183

Name	Format	Size (bytes)	Value	Data Characteristics
Message Type or Test Message Type	Unsigned integer	1	03	Range for message type = $0-127$ Range for test message type = $128-255$ (Test message type equals message type plus 128.) This field uniquely identifies the message and indicates to the receiver what message format to expect and process.
Fill/Spare (reserved for future use)	Unsigned integer	1	0	Value = 0
Source Identification	Unsigned integer	1	0	Range = 0-255; not used for LRO
Destination Identification	Unsigned integer	1	0	Range = 0-255; not used for LRO
Fill/Spare (reserved for future use)	Unsigned integer	1	0	Value = 0
Message Generation Time and Date	NASA PB5 code format	7	variable	Contains Greenwich mean time (GMT)
Spacecraft ID	Unsigned integer	2	0xA5	LRO will use the CCSDS uplink SCID value of A5
Message Sequence Number	Unsigned integer	2	0	Range = $0.65,535$; one-up counter that wraps around, on reaching the largest value, to smallest value. This number is one-up per source identification and is assigned by the originator. This field is not used for LRO.
Software Version Number	Unsigned integer	2	0	Range = 0-255 (first byte identifies major EDOS release; second byte represents version of major release, either initial version or an update) This field is not used for LRO.
Message Length	Unsigned integer	2	variable	Range = 24-65,535 (number of bytes in message); For LRO, this value includes the length of the LRO ground message header, as well as the attached CLTU
Fill/Spare (reserved for future use)	Unsigned integer	4	0	Value = 0

Table 4-37 EOS Ground Message Header Definitions

4-184

For the DSN, the ground generated CLTUs are formatted into a Space Link Extension (SLE) Forward Command Link Transmission Unit (F-CLTU). The format previously discussed in Section 4.2.13 SLE Telemetry Header, is identical for the SLE F-CLTU formats.

4.6.1 (MOC-34) (MOC-36) Real-time Orbiter Commands (WS1 and USN and SN)

This product is the real-time Orbiter Commands via CLTUs to both the SCN station (WS1) and the four currently allocated USN stations using the EOS Ground Message Header. The SN also uses this EOS Command Message Header; The LRO MOC may use the SN command uplink during the first several hours of the mission.

4.6.1.1 Product Details

Time interval	Can only be up to 8 commands to execute at the identical 1 second interval
File duration	NA
File or Data Generation Frequency	Prior to every station contact, as required to support Orbiter health and safety
Delivery method (real-time, SCP, FTP, etc)	Real-time TCP socket to designated station
Data Volume	Variable, based on real-time commanding or if commanding via CFDP file uplink
Accuracy (if it applies)	NA
Other pertinent details	One command per CLTU

4.6.1.2 Format

The SCN Real-time Orbiter Commands consists of the commands formatted into CLTUs and transmitted to either the WS1 station or the appropriate USN station supporting the mission.

The SCN Real-time Orbiter Commands (for WS1 and USN interfaces) are sent in a binary form over a socket connection from the LRO MOC. Since this is a binary representation of the data, no sample product is listed in Appendix B.

4.6.2 (MOC-35) DSN Real-time Orbiter Commands

This product is the real-time Orbiter Commands via CLTUs to DSN stations using the Space Link Extension (SLE). For the DSN, the ground generated CLTUs are formatted into an SLE Forward Command Link Transmission Unit (F-CLTU). The format previously discussed in Section 4.2.13, SLE Telemetry Header, is identical for the SLE F-CLTU structure. The LRO MOC and the DSN will perform the following steps to ensure an SLE command interface with the DSN and to ensure commands are transmitted to the Orbiter:

- The LRO MOC issues a CLTU-BIND operation to establish an association
- DSN generates the Acquisition and Idle Sequences on the physical channel in accordance with the physical link operational procedure (PLOP-2) in effect
- The LRO MOC performs the CLTU-START operation

4-185

- The LRO MOC performs the CLTU-TRANSFER-DATA operation
- The LRO MOC sends Additional CLTUs using the CLTU-TRANSFER-DATA operation
- At the time specified for the start of radiation, DSN injects the first CLTU into the physical channel and modulated onto the RF carrier
- DSN processes successive CLTUs in a similar fashion
- The LRO MOC transfers the last CLTU to DSN
- DSN completes processing the buffered CLTUs
- The LRO MOC performs the CLTU-STOP operation
- The LRO MOC performs CLTU-UNBIND operations to release the association
- At the end of the scheduled service period, DSN transitions to unmodulated carrier, then typically turns off the RF link

Time interval	Can only be up to 8 commands to execute at the identical 1 second interval
File duration	NA
File or Data Generation Frequency	Prior to every station contact, as required to support Orbiter health and safety
Delivery method (real-time, SCP, FTP, etc)	Real-time TCP socket to designated station
Data Volume	Variable, based on real-time commanding or if commanding via CFDP file uplink
Accuracy (if it applies)	NA
Other pertinent details	One command per CLTU Uses the Space Link Extension Concepts

4.6.2.1 Product Details

4.6.2.2 Format

The DSN Real-time Orbiter Commands consists of the commands in CLTUs and formatted within the SLE wrappers. The SCN Real-time Orbiter Commands (for WS1 and USN interfaces) are sent in a binary form over a socket connection from the LRO MOC. Since this is a binary representation of the data, no sample product is listed in Appendix B.

4.7 NAVIGATION AND ANCILLARY INFORMATION FACILITY (NAIF) INTERFACE AND PRODUCTS

The following sections provide the details related to the interfaces and products distributed by NASA's Navigation and Ancillary Information Facility (NAIF) for use by the LRO mission. The NAIF is located at the Jet Propulsion Laboratory to lead the design and implementation of the "<u>SPICE</u>" ancillary information system. SPICE is used throughout the lifecycle of space science missions to help scientists and engineers design missions, plan scientific observations, analyze science data and conduct various engineering functions associated with flight projects. These

4-186

products are generated by the NAIF and the LRO MOC will receive these files when notified and then distribute the files to the necessary Science Operations Centers.

The user can receive more information as well as a SPICE toolkit or review the set of products by using the following NAIF web site:

http://naif.jpl.nasa.gov/naif/data.html

The user can download any of the identified sample products or review a textual product by checking the NAIF web site.

4.7.1 (NAIF-1) SPICE Planetary SPK

The SPICE Planetary SPK file is one of the generic SPICE products that the LRO MOC receives (FTP pulls) from the NAIF/PDS repository whenever the NAÏF generates a new version.

The LRO MOC uses a generic term of dexxx since this NAIF provides an updated version on an non-routine basis. For each new release, the NAIF updates the xxx designation with a 3-digit construct. The most recent version that the NAIF generated is identified as de421.

Time interval	NA
File duration	NA, good until the next regeneration of the product by NAIF
File or Data Generation Frequency	Regenerated, as identified by NAIF personnel
Delivery method (real-time,	MOC initiates an FTP pull from the NAIF
SCP, FTP, etc)	MOC scp pushes to all SOCs
Data Volume	Variable; current version is approximately 16Mbytes
Accuracy (if it applies)	As defined by NAIF
Other pertinent details	NA

4.7.1.1 Product Details

4.7.1.2 Format

The current version of this NAIF-supplied product for the planetary SPICE ephemeris file is identified with the following file name de421.bsp.

The SPICE Planetary SPK is a binary formatted file. As such, there is no sample product provided in Appendix B.

4.7.2 (NAIF-2) SPICE LSK – Leap Second

The SPICE LSK – Leap Second File is another of the generic SPICE products that the LRO MOC receives (FTP pulls) from the NAIF/PDS repository whenever the NAÏF generates a new version. This logical product actually consists of two separate files based on the user's platform;

4-187

the file contains all of the leap second adjustments and when these adjustments should be used. This file supports the conversion between ephemeris time and UTC. The LRO MOC will forward the correct version of the file to the SOCs based on the SOC specific platform.

Time interval	NA; the file contains the specific times at which a leap-second is applied
File duration	NA
File or Data Generation Frequency	Regenerated, as identified by NAIF personnel
Delivery method (real-time, SCP, FTP, etc)	MOC initiates an FTP pull from the NAIF MOC scp pushes to all SOCs
Data Volume	Variable
Accuracy (if it applies)	Associated UTC time corresponding to the Leap-second is accurate to milliseconds
Other pertinent details	MOC will forward either the PC-based file or the Unix-based file Specific details are left for the MOC to SOC Operations Agreements

4.7.2.1 Product Details

4.7.2.2 Format

The NAIF provides two separate versions of the leap-second file. There are versions for both Window-based PC platforms and a separate version for Linux or Mac OS systems.

The current version of this NAIF-supplied product is either one of the following two versions based on whether the user system is Windows-based or Linux/Mac-based.

- naif0008.tls for Unix-style text file; it is suitable for use on any Unix-based systems, including PC/Linux or Mac/OSX systems
- naif0008.tls.pc for PCs running Windows

The SPICE LSK – Leap Second File is a textual formatted file. However, since this is a NAIF supplied product the user should reference the NAIF web site for the specific file format concepts.

4.7.3 (NAIF-3) SPICE Generic PCK (Planetary Constants)

The SPICE Generic PCK file is another of the generic SPICE products. This "logical" product consists of two files that the LRO MOC receives (FTP pulls) from the NAIF/PDS repository whenever the NAÏF generates a new version.

4-188

4.7.3.1 Product Details

Time interval	Data samples provided at 60 minute increments
File duration	Contains a year of information
File or Data Generation Frequency	Regenerated, as identified by NAIF personnel
Delivery method (real-time, SCP, FTP, etc)	MOC initiates an FTP pull from the NAIF MOC scp pushes to all SOCs
Data Volume	Variable; < 1 MByte
Accuracy (if it applies)	NA
Other pertinent details	NA

4.7.3.2 Format

The DE-421 based kernel file provides the orientation of Lunar Principal Axis (PA) reference frame; the specific file that the MOC pulls from the NAIF is:

moon_pa_de421_1900-2050.bpc

The NAIF also creates a Generic text PCK kernel, which contains orientation data for the sun, planets, natural satellites, and selected asteroids. This file is identified as: pck00008.tpc

The NAIF generates these SPICE Generic PCK files; these are binary formatted files. Since this is a binary formatted file, no sample product will be shown in Appendix B.

4.7.4 (NAIF-4) SPICE Lunar Reference Frame

This logical file is another of the generic SPICE products. This "logical" product consists of two files that the LRO MOC receives (FTP pulls) from the NAIF/PDS repository whenever the NAÏF generates a new version.

This file contains the various lunar constants or other reference frame information required to support a mission orbiting the moon.

4.7.4.1	Product Details
	0 0.0.00 _ 0 0000000

Time interval	NA
File duration	File is valid until next recalculations and regeneration
File or Data Generation Frequency	Regenerated, as identified by NAIF personnel
Delivery method (real-time,	MOC initiates an FTP pull from the NAIF
SCP, FTP, etc)	MOC scp pushes to all SOCs
Data Volume	Variable; < 1 Kbytes
Accuracy (if it applies)	NA
Other pertinent details	NA

4.7.4.2 Format

The first file is the Lunar frames kernel, which contains the latest specifications of lunar reference frames realizing the Lunar Principal Axis (PA) and Mean Earth/Polar Axis (ME) reference system. This file is identified as:

moon_071218.tf

The reference frames specified by this kernel are associated with the lunar libration data provided by JPL's DE-418 planetary ephemeris. The NAIF provides "frame association" kernels that simplify changing the body-fixed frame associated with the Moon.

The user should only use one of these two bases on whether the user want to translate into the "principal-axis" reference frame or the "mean-earth" reference frame.

moon_assoc_me.tf moon_assoc_pa.tf

These SPICE Lunar Reference Frame Files are text- formatted file. However, since these are NAIF supplied products, the user should reference the NAIF web site for the specific file format concepts.

4.8 LAUNCH SITE (KSC) PRODUCT AND DESCRIPTIONS

This section contains the interface products generated by either the LRO MOC or the launch site at Kennedy Space Center (KSC)

This section provides the details on the interfaces between the Kennedy Space Center (the launch site) or the launch vehicle and the LRO MOC.

4.8.1 (KSC-1) (KSC-2)Real-time Orbiter Telemetry

This interface provides a telemetry flow path from the KSC launch site for real-time. This interface supports both the pre-launch verification tests, when the orbiter and instrument suites

4-190

are at KSC prior to the launch, as well as the actual launch duration. This interface is between two ITOS systems. The one at KSC acts as the initial interface with the orbiter and then sends the telemetry data to the ITOS located at the LRO MOC.

Time interval	Based on simulated tests in support of launch criteria (tests and rehearsals)
File duration	NA
File or Data Generation Frequency	Pre-Launch: LaunchAs required to support mission simulations or rehearsals Required to support actual launch duration for data flow from KSC
Delivery method (real-time, SCP, FTP, etc)	Real-time socket connection to LRO MOC
Data Volume	Variable; based on Orbiter telemetry rates
Accuracy (if it applies)	100 % of real-time VC0 or VC1 telemetry data sent to the MOC from the launch site
Other pertinent details	Only required during pre-launch (L-3 M) up through Launch

4.8.1.1 Product Details

4.8.1.2 Format

The Real-time Orbiter Telemetry is a collection of APIDs and contains the associated telemetry mnemonics in binary form. As such, there is no sample product provided in Appendix B.

4.8.2 (KSC-3) Archived VC0 Orbiter Telemetry

This interface provides a telemetry flow path from launch Site for both real-time and archived files. This interface is used during pre-launch verification tests, when the orbiter and instrument suites are at KSC prior to the launch. This interface is between two ITOS systems. The one at KSC acts as the initial interface with the orbiter and then sends the telemetry data to the ITOS located at the LRO MOC.

4.8.2.1 Product Details

Time interval	Based on simulated tests in support of launch criteria (tests and rehearsals)
File duration	Based on simulated station support duration and downlink rate
File or Data Generation Frequency	Pre-Launch: As required to support sims or rehearsals
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC
Data Volume	Variable; based on APID filter rates and test durations
Accuracy (if it applies)	100 % of archived VC0 telemetry data sent to the MOC from the launch site
Other pertinent details	Only required during pre-launch (L-3 M) up through Launch

4-191

4.8.2.2 Format

This archived file name convention is identical to the convention as previously defined in Section 4.2.3.

The Archived VC0 Orbiter Telemetry is a collection of APIDs and contains the associated telemetry mnemonics in binary form. As such, there is no sample product provided in Appendix B.

4.8.3 (KSC-4) Archived VC1 Telemetry Data

This interface provides a telemetry flow path from launch Site for both real-time and archived files. This interface is used during pre-launch verification tests, when the orbiter and instrument suites are at KSC prior to the launch. This interface is between two ITOS systems. The one at KSC acts as the initial interface with the orbiter and then sends the telemetry data to the ITOS located at the LRO MOC.

Time interval	Based on simulated tests in support of launch criteria (tests and rehearsals)
File duration	1 hour, or 1MByte
File or Data Generation Frequency	Pre-Launch: As required to support sims or rehearsals
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC
Data Volume	Approximately 1 MB file
Accuracy (if it applies)	100 % of archived VC1 telemetry data sent to the MOC from the launch site
Other pertinent details	Only required during pre-launch (L-3 M) up through Launch

4.8.3.1 Product Details

4.8.3.2 Format

This archived file name convention is identical to the convention as previously defined in Section 4.2.4.

The Archived VC1 Orbiter Telemetry is a collection of APIDs and contains the associated telemetry mnemonics in binary form. As such, there is no sample product provided in Appendix B.

4.8.4 (KSC-5)Archived VC2 Telemetry Data

This interface provides a telemetry flow path from launch Site for both real-time and archived files. This interface is used during pre-launch verification tests, when the orbiter and instrument suites are at KSC prior to the launch. This interface is between two ITOS systems. The one at KSC acts as the initial interface with the orbiter and then sends the telemetry data to the ITOS located at the LRO MOC.

4-192

Time interval	Based on simulated tests in support of launch criteria (tests and rehearsals)
File duration	1 hour, or 1MByte
File or Data Generation Frequency	Pre-Launch: As required to support sims or rehearsals
Delivery method (real-time, SCP, FTP, etc)	Scp to LRO MOC
Data Volume	Approximately 1 MByte file
Accuracy (if it applies)	100 % of archived VC2 telemetry data sent to the MOC from the launch site
Other pertinent details	Only required during pre-launch (L-3 M) up through Launch

4.8.4.1 **Product Details**

4.8.4.2 Format

This file name convention corresponding to the Archived VC2 data files conform to the file names created on-board the spacecraft.

The Archived VC2 Telemetry Data File is a collection of APIDs and the associated telemetry mnemonics in binary form; as such, there is no sample product provided in Appendix B.

4.8.5 (KSC-6) Archived VC3 telemetry Data

This interface provides a telemetry flow path from launch Site for both real-time and archived files. This interface is used during pre-launch verification tests, when the orbiter and instrument suites are at KSC prior to the launch. This interface is between two ITOS systems. The one at KSC acts as the initial interface with the orbiter and then sends the telemetry data to the ITOS located at the LRO MOC.

4.8.5.1	Product Details
---------	------------------------

Time interval	Based on simulated tests in support of launch criteria (tests and rehearsals)
File duration	1 hour, or 1MByte, or 1 LROC Image (either WAC or NAC)
File or Data Generation Frequency	Pre-Launch: As required to support sims or rehearsals
Delivery method (real-time, SCP, FTP, etc)	scp to LRO MOC
Data Volume	1 MB file up to 250 MByte files based on specific science instrument
Accuracy (if it applies)	100 % of archived VC3 telemetry data sent to the MOC from the launch site
Other pertinent details	Only required during pre-launch (L-3 M) up through Launch

4-193

4.8.5.2 Format

This file name convention corresponding to the Archived VC2 data files conform to the file names created on-board the spacecraft.

The Archived VC3 Orbiter Telemetry is a collection of APIDs and the associated telemetry mnemonics in binary form; as such, there is no sample product provided in Appendix B.

4.8.6 (LV-1) Launch Vehicle Post Separation Vector

This information is the Post-separation vector from the launch vehicle provider; nominally, this exchange is internal to the FDF, as the ELV team, under contract to the LV, will provide the vector electronically. This interface is used post-launch and occurs several minutes after the actual separation of LRO from the launch vehicle.

Time interval	NA
File duration	NA
File or Data Generation Frequency	Once Post-Launch at approximately 30 minutes after LRO separation from Launch Vehicle During pre-launch tests and simulations, a dummy version of this file may be transmitted to test the interface protocol and receipt at the destination
Delivery method (real-time, SCP, FTP, etc)	FTP to LRO FDF Facility (B28 @ GSFC) Backup is to FAX to B28 at 301-286-1668).
Data Volume	1-2 pages of LV separation information
Accuracy (if it applies)	Best estimate based on available real-time tracking data
Other pertinent details	Only required immediately after launch

4.8.6.1 Product Details

4.8.6.2 Format

The Expendable Launch Vehicle FDF team (under contract to the United Launch Alliance contractor) electronically supplies this product to the Flight Dynamic's Orbit Team. This product is a binary file and as such, no sample product is provided in Appendix B.

4.9 LRO MOC PRODUCT INTERFACE WITH THE LAUNCH SITE

This section describes the interface between the LRO MOC and KSC support facilities. These interfaces are used in both a pre-launch and post-launch configuration.

4.9.1 (MOC-38) Telemetry to KSC

The interface is used for post launch data flows between the MOC and the launch site at the Kennedy Space Center. This interface is between two ITOS systems. The ITOS located at the LRO MOC receives the post-launch telemetry data via the orbiter and transmits the post-launch telemetry data to the ITOS system located at KSC.

4-194

4.9.1.1 Product Details

Time interval	Based on data downlink rate (~2Kbps)	
File duration	NA	
File or Data Generation Frequency	Pre-Launch:As required to support simsPost-LaunchAs required for Orbiter telemetry transfer during the post-launchPhasePhase	
Delivery method (real-time, SCP, FTP, etc)	Real-time TCP socket connection from Prime ITOS to ITOS residing at KSC	
Data Volume	Variable based on support durations and downlink rate100 % of telemetry data sent from the MOC to the launch siteOnly required during pre-launch (L-3 M) and immediately after launch (L+3 D)	
Accuracy (if it applies)		
Other pertinent details		

4.9.1.2 Format

This interface is a collection of requested APIDs and contains the associated telemetry mnemonics in binary form. As such, there is no sample product provided in Appendix B.

4.9.2 (MOC-37) Commands to KSC

This interface is used for testing and mission rehearsals and provides the conduit for sending commands to the LRO spacecraft prior to launch. This interface is between two ITOS systems. The ITOS located at the LRO MOC generates the commands and transmits the commands to the ITOS system located at KSC.

Time interval	Can only be up to 8 commands to execute at the identical 1 second
File duration	Command file (ATS load is for a 1-day period)
File or Data Generation Frequency	Pre-Launch: As required to support simulations and rehearsals
Delivery method (real-time, SCP, FTP, etc)	Real-time TCP socket connection from Prime T&C Workstation
Data Volume	NA
Accuracy (if it applies)	100 % of command data sent from the MOC
Other pertinent details	Only required during pre-launch (L-3 M) and immediately after launch (L+1H)

4.9.2.1 Product Details

4.9.2.2 Format

This interface is a collection of real-time command within a CLTU data structure and contains the associated command mnemonics in binary form. As such, there is no sample product provided in Appendix B.

4.9.3 (MOC-69) LRO-Provided Separation Data File

The LRO-Provided Separation Data File is a MOC-generated report that provides a combination of data as received from Flight Dynamics and the Attitude Ground System, which is hosted in the MOC. Flight Dynamics provides an initial post-launch orbital element set as defined by the standard set of Keplerian elements. The MOC/AGS component generates body tip-off rates and then appends the AGS-calculated data onto the FD-generated data.

Time interval	NA; data is time stamped with the separation epoch only
File duration	NA; data is generated only once post-launch
File or Data Generation Frequency	Once; post-launch
Delivery method (real-time, SCP, FTP, etc)	MOC scp-es the data file to the launch contractor (United Launch Alliance)
Data Volume	Less than 1 KByte
Accuracy (if it applies)	Best available based on received station tracking data as the initial Separation vector received from the launch site
Other pertinent details	NA

4.9.3.1 Product Details

4.9.3.2 Format

The LRO-Provided Separation Data File is an ASCII formatted file in which each line contains one "record" of the overall file. The first several lines contained the FD-calculated Keplerian element information; the remaining fields are the AGS-calculated body tip-off rates. The following table provides the overall file contents and format.

The file contains best estimated values for the launch separation information as calculated from the initial launch separation vector and supplemented using available tracking data.

The file will contain 3 "header" records that provide a summary of the file name and date and time of creation; each of these "header" records have the # character in the first column.

The "data" records immediately follow the "header" records and each line contains one item associated with the best estimated separation data. The following table provides the details regarding the "data" records fields:

4-196

Field name	Field Characteristics
Orbital I	nsertion Information (from FDF-44 product)
Date of launch vehicle separation	8 ASCII digits that represent the True equinox of date; with the following format: MMDDYYYY
Time of launch vehicle separation	6 ASCII digits that represent the True equinox of date; with the following format HHMMSS
Semi-major Axis (Km)	Floating point value, format: nnnnnnnnnnnnnnnn
Eccentricity (Unitless)	Floating point value; format 0.nnnnnnnnn
Inclination (Degrees)	Floating point value: format: nnn.nnnnn; not zero padded
Right Ascension of Ascending Node (Degrees)	Floating point value: format: nnn.nnnnn; not zero padded
Argument of perigee (Degrees)	Floating point value: format: nnn.nnnnn; not zero padded
True Anomaly (Degrees)	Floating point value: format: nnn.nnnnn; not zero padded
Orb	iter Separation Data (S/C Body Frame)
Separation Rate X Axis (degrees/sec)	Floating point value: format: nnn.nnnnn; not zero padded
Separation Rate Y Axis (degrees/sec)	Floating point value: format: nnn.nnnnn; not zero padded
Separation Rate Z Axis (degrees/sec)	Floating point value: format: nnn.nnnnn; not zero padded
Sun Vector X Axis (Unitless)	Floating point value: format: nnn.nnnnn; not zero padded
Sun Vector Y Axis (Unitless)	Floating point value: format: nnn.nnnnn; not zero padded
Sun Vector Z Axis (Unitless)	Floating point value: format: nnn.nnnnn; not zero padded

Table 4-38 Best Estimated Separation Data Description

A sample file name for this data file has the following convention:

<File identifier>_<Time>.<file extension>

where File Identifier = [5 characters]; that identifies the file type identifier: File Type (MOC69); followed by the underscore (_) character

4-197

Time	=	[14 ASCII Digits] Specifies the date (day & time) when the MOC completes the product generation. YYYYDOY-HHMM where, YYYY => 4 ASCII digits of year DOY => 3 ASCII digits for day of year HHMM => 4 ASCII digits for hour and minutes NOTE: This date/time represents when the MOC/AGS element created/updated the file
file extension	=	[3 characters] txt

For example, a sample filename for this product is identified as: MOC69_2008320-0210.txt

Appendix B, Figure B.4-20 provides a sample format of the file contents containing the LRO provided Separation Data product.

4.10 LRO MOC PRODUCT INTERFACE WITH THE FLIGHT DYNAMICS FACILITY

This section describes the interface between the LRO MOC and FDF. These interfaces are used in both a pre-launch and post-launch configuration.

4.10.1 (MOC-63) Propulsion System Data

This file contains the temperature and pressure data from the propulsion system. The MOC creates this file on an as-needed basis for FDF use. FDF uses this information in planning and modeling an upcoming maneuver and for post-maneuver analysis.

Time interval	Data samples provided at downlinked data frequency based on APIDs and real-time Filter tables downlink rates
File duration	30 minutes prior to planned maneuver to 10 minutes after maneuver, Other file durations as requested by FDF using OAR
File or Data Generation Frequency	Daily 2-3 days prior to delta-V maneuver 12 hours prior to the Delta-V for 24 hours after a maneuver Immediately after executed maneuver; within 30 minutes Other file delivery is based on using OAR
Delivery method (real-time, SCP, FTP, etc)	scp to FDF via the FD Communications Server; the backup uses the FDPC (MOC performs the scp push); using MOC subdirectory location
Data Volume	Variable; based on APID and the downlink rate
Accuracy (if it applies)	Temperature/pressure accuracy dependent on associated telemetry mnemonic Time sampling accurate to 1 second
Other pertinent details	NA

4.10.1.1 Product Details

4-198

4.10.1.2 Format

The Propulsion System Data file is a comma separated values (csv) text file, which consists of a of the requested time, temperature and pressure mnemonic values.

The data should correspond to the data for each tank (time, temperature, and pressure); the file should also contain the time and thruster counts for the four NT thrusters and the eight AT thrusters.

The first eight lines of the file contain header information that identifies the file generation parameters, as noted:

ASCII Report Input Definition File: C:\itps\Data\IDF\MOC63_PROPDATA.idf Report Date: 03/31/2008 DMDB file(s): C:\itps\Data\dmdb\LRODB_033108.dmdb Decom start: 2008/022/00:00:00 Decom stop: 2008/023/00:00:00

The file contains a header row that identifies the date/time field format (Year and S/C Time) and the corresponding spacecraft mnemonic. The remaining file contains the data values for the year, s/c time and the selected mnemonic values for the report.

The following table provides the details of the product format

Field name	Field Characteristics
Header Record	Year S/C Time CDHEPRESSTNKTEMP – Identifier for Mnemonic 1 name CDLPRXDCR – Identifier for Mnemonic 2 Name
Data Records 1 : N	YYYY; (e.g., 2008) DDD-HH:MM:SS.mmm (e.g., 022-18:03:13.237) Mnemonic Value 1 – based on the selected mnemonic (e.g., 2291) Mnemonic Value 2 – based on the selected mnemonic (e.g., -0.35021)

The LRO MOC uses the following file-naming convention for MOC-transmitted files.

The filename consists of 23 characters; it also contains a three character file extension name. There are underscores (_) between the file name designators and there is a period (.) between the file name and file extension fields. The form of the filename is as follows:

<System Identifier>_<FileName>_<YYYYDOY_HHMMSS>.<file extension>

4-199

where	System Identifier	=	[5 ASCII digits and characters]; with the following system Identifier convention: MOCnn; where nn=63 for this product Identifier; followed by the underscore (_) character
	FileName	=	[8 characters] which are used to identify the File Type (PROPDATA), followed by the underscore (_) character
	Creation Time	=	[14 characters] Specifies start time of file (first telemetry point within the file). YYYYDOY_HHMMSS where, YYYY => 4 ASCII digits of year DOY => 3 ASCII digits for day of year; followed by the underscore (_) character HHMMSS => 6 ASCII digits for hour, minutes, and seconds
	file extension	=	[6 characters] csv

A sample LRO Propulsion System Data file name is:

MOC63_PROPDATA_2008320_021030.csv.

A sample LRO Propulsion System Data is provided in Appendix B, Figure B.4-12

In addition to the comma separated values ASCII file, the MOC provides a plotted version of the data in a "pdf" formatted file. A sample file name associated for this plotted data is:

MOC63_PROPDATA_2008320_021030_plot.pdf.

4.10.2 (MOC-65) Definitive Spacecraft Body Frame Attitude File

This file provides the orientation of the spacecraft body axes in the mean of J2000 frame; this orientation is represented using quaternions.

4.10.2.1 Product Details

Time interval	Data samples provided at 1 minute intervals
File duration	Previous 24 hours of spacecraft quaternion data Nominally from 0000Z previous day to 0000Z of current day
File or Data Generation Frequency	Daily when generating other Attitude products
Delivery method (real-time, SCP, FTP, etc)	MOC scp to FDF via the FD Communications Server; the backup uses the FDPC (MOC performs the scp push); using MOC subdirectory location
Data Volume	Approx 100 Kbytes for the data file
Accuracy (if it applies)	Time sampling accurate to millisecond
Other pertinent details	NA

4-200

4.10.2.2 Format

The file will contain a descriptive header followed by a data record for each output time. The following is a preliminary example of the spacecraft body frame attitude file header:

- C Spacecraft_Body_Attitude_File
- C Satellite ID LRO
- C StartTime 2008 123 0.000000
- C StopTime 2008 123 0.000000
- C CoordinateFrame MJ2000

C YYYY DDD SSSSS.SSS Component_1(q1) Component_2(q2) Component_3(q3) Component_4(q4)

The data record has the following contents; the columns are space delimited:

Column	Item	Format	Units
1	Year	YYYY	years
2	Day of the Year	DDD	day
3	Seconds of Day	SSSSS.SSS	seconds
4	q_1 quaternion element defining the orientation of the satellite body axes with respect to the Mean of J2000.0 frame at the specified time	±0.xxxxxxxx	unitless
5	q_2 quaternion element defining the orientation of the satellite body axes with respect to the Mean of J2000.0 frame at the specified time	±0.xxxxxxxx	unitless
6	q_3 quaternion element defining the orientation of the satellite body axes with respect to the Mean of J2000.0 frame at the specified time	±0.xxxxxxxx	unitless
7	q_4 quaternion element defining the orientation of the satellite body axes with respect to the Mean of J2000.0 frame at the specified time	±0.xxxxxxxx	unitless

Table 4-39. Spacecraft Body Attitude File Data Record Format

The records will be timetagged in UTC time (not MET). The complete filename consists of 25 characters; it also contains a three character file extension name. There are underscores (_) between the file name designators and there is a period (.) between the file name and file extension fields. The form of the filename is as follows:

<File Designator> <File Duration ><Version Identifier>.<file extension>

4-201

where	File Designator	=	[5 ASCII characters and digits] which are used to identify the File Identifier; in the form of mocnn; where $(nn = 65)$, followed by the underscore (_) character
	File Duration	=	[15 ASCII Digits] Specifies the file start and stop dates (separated by the underscore (_) character) YYYYDOY where, YYYY => 4 ASCII digits of start year DOY => 3 ASCII digits for start day of year yyyydoy where, yyyy => 4 ASCII digits of stop year doy => 3 ASCII digits for stop day of year
	Version Identifier	=	[3 ASCII Digits and characters] specifies the version number; vnn; where $nn = 01$ for the initial file version the version number monotonically increments for each new release (01, 02, 03, etc)
	file extension	=	[3 characters] txt

A sample LRO Definitive Spacecraft Body Frame Attitude File name is for the 0000GMT of January 15, 2009 to 0000 GMT of January 16, 2009 is:

moc65_2009015_2009016_v01.txt

Appendix B, Figure B.4-13 provides a sample of a file containing the Definitive Spacecraft Body Attitude File Data File product.

4.10.3 (MOC-66) Spacecraft HGA Motion File

This file provides the orientation of the unit vector along the HGA boresight in the Mean of J2000.0 frame.

Time interval	Data samples provided at 1 minute intervals
File duration	Previous 24 hours of spacecraft HGA unit vector data Nominally from 0000Z previous day to 0000Z of current day
File or Data Generation Frequency	Daily when generating other Attitude products
Delivery method (real-time, SCP, FTP, etc)	scp to FDF via the FD Communications Server; the backup uses the FDPC (MOC performs the scp push); using MOC subdirectory location
Data Volume	Approx 100 Kbytes for the data file
Accuracy (if it applies)	Time sampling accurate to millisecond
Other pertinent details	NA

4.10.3.1 Product Details

4-202

4.10.3.2 Format

This file provides a descriptive header followed by a data record for each output time. The following is a preliminary example of the file header:

- C HGA_Motion_File
- C Satellite_ID LRO
- C StartTime 2008 123 0.000000
- C StopTime 2008 123 0.000000
- C CoordinateFrame MJ2000

C YYYY DDD SSSSS.SSS X_Direction Y_Direction Z_Direction

The data records have the following contents:

Table 4-40. HGA Motion File Data Record Format

Column	Item	Format	Units
1	Year	YYYY	year
2	Day of Year	DDD	day
3	Seconds of Day	SSSSS.SSS	seconds
4	X component of a unit vector along the HGA boresight in the Mean of J2000.0 frame $(\hat{B}_{HGA}^{b})_{l}$	±0.xxxxxxxx	unitless
5	Y component of a unit vector along the HGA boresight in the Mean of J2000.0 frame $(\hat{B}_{HGA}^{b})_{2}$	±0.xxxxxxxx	unitless
6	Z component of a unit vector along the HGA boresight in the Mean of J2000.0 frame $(\hat{B}_{HGA}^{b})_{3}$	±0.xxxxxxxx	unitless

Appendix B, Figure B.4-14 provides a sample of a file containing the Raw Spacecraft HGA Motion File product.

4.10.4 (MOC-67) Spacecraft Solar Array Motion File

This file provides the orientation of the unit vector along the normal to the solar array in the Mean of J2000.0 frame.

4.10.4.1 Product Details

Time interval	Data samples provided at 1 minute interval
File duration	Previous 24 hours of spacecraft's Solar array data Nominally from 0000Z previous day to 0000Z of current day
File or Data Generation Frequency	Daily when generating other Attitude products
Delivery method (real-time, SCP, FTP, etc)	scp to FDF via the FD Communications Server; the backup uses the FDPC (MOC performs the scp push); using MOC subdirectory location
Data Volume	Approx 100 Kbytes for the data file
Accuracy (if it applies)	Time sampling accurate to millisecond
Other pertinent details	NA

4.10.4.2 Format

Table 4-41. SA Motion File Data Record Format

Column	Item	Format	Units
1	Year	YYYY	year
2	Day of Year	DDD	day
3	Seconds of Day	SSSSS.SSS	seconds
4	X component of a unit vector along the normal to the solar array in the Mean of J2000.0 frame	±0.xxxxxxxx	unitless
5	Y component of a unit vector along the along the normal to the solar array in the Mean of J2000.0 frame	±0.xxxxxxxx	unitless
6	Z component of a unit vector along the normal to the solar array in the Mean of J2000.0 frame	±0.xxxxxxxx	unitless

Appendix B, Figure B.4-15 provides a sample of a file containing the Spacecraft Solar Array Motion File product.

4.10.5 (MOC-68) OBC Generated Attitude Data File

The OBC Generated Attitude Data File is a comma-separated values (CSV) file created by the MOC's Trending system for use by the FD Maneuver Team. The Trending definition file defines the data mnemonics associated with this file.

The MOC creates this file using the following requested APID 240, which corresponds to the OBC calculated attitude data; calculated and target attitude quaternion data.

4-204

4.10.5.1 Product Details

Time interval	Variable based on Orbiter VC1 Data collection filters and per APID; nominally this will be at 5 Hz rate
File duration	Covers the duration of a specified maneuver; includes the maneuver slew to orientate the spacecraft before/after the maneuver includes +/- 5 minutes around the maneuver
File or Data Generation	1 file per orbit (for stored HK data files)
Frequency	1 per station contact (for real-time supports)
Delivery method (real-time, SCP, FTP, etc)	MOC scp-es the data file to the FD Communications Server (MOC scp pushes)
Data Volume	Variable; based on APID 240 and the downlink rate
Accuracy (if it applies)	data accuracy will depend on the type of data within the specified APIDs (EU, Discrete, etc), as well as the sampling frequency of each individual mnemonic GMT provided in the data files for each row should contain accuracy up to the sub-second
Other pertinent details	MOT creates a set of files (1 file per orbit) that contains the requested data duration (with overlap both before and after the requested time period)

4.10.5.2 Format

The OBC Generated Attitude Data ASCII formatted file in which the data fields are comma separated. The file contains eight lines of header information followed by one line of a data header definition that provided the descriptor information for the remaining data lines. The eight-line header data provides the following fields and information:

ASCII Report Input Definition File: C:\itps\Data\IDF\MOC68_240.idf Report Date: 04/07/2008 DMDB file(s): C:\itps\Data\dmdb\LRODB_033108.dmdb Decom start: 2008/303/10:15:00 Decom stop: 2008/303/13:00:00

4-205

The file then contains a variable number of data lines that have the following format for each identified column.

Field name	Field Characteristics
Header Record	Year S/C Time SWACATTQ1 – Identifier for Mnemonic Name
	SWACATTQ2 – Identifier for Mnemonic Name
	SWACATTQ3 – Identifier for Mnemonic Name
	SWACATTQ4 – Identifier for Mnemonic Name
	SWACTARGETQ1 – Identifier for Mnemonic Name
	SWACTARGETQ2 – Identifier for Mnemonic Name
	SWACTARGETQ3 – Identifier for Mnemonic Name
	SWACTARGETQ4 – Identifier for Mnemonic Name
	SWACUSEDATTQSRC – Identifier for Mnemonic Name
	SWACSELTQTYPE – Identifier for Mnemonic Name
	SWACATTERR1 – Identifier for Mnemonic Name
	SWACATTERR2 – Identifier for Mnemonic Name
	SWACATTERR3 – Identifier for Mnemonic Name
	SWACSELRATE1 – Identifier for Mnemonic Name
	SWACSELRATE2 – Identifier for Mnemonic Name
	SWACSELRATE3 – Identifier for Mnemonic Name
	SWACRATEERRMAG – Identifier for Mnemonic Name
	SWACATTERRMAG – Identifier for Mnemonic Name
Data Records 1 : N	YYYY; (e.g., 2008)
	DDD-HH:MM:SS.mmm (e.g., 022-18:03:13.237)
	Mnemonic Value $1-4$ based on the Attitude Q mnemonic (e.g., 0.259326)
	Mnemonic Value $5-8$ based on the Target Q mnemonic (e.g., 0.259333)
	Mnemonic Value 9 based on the Attitude Q source (e.g., 2)
	Mnemonic Value 10 based on the Selected Q Type mnemonic (e.g., 1)
	Mnemonic Value $11 - 13$ based on the Attitude Estimated Error mnemonic (e.g., 0.000015)
	Mnemonic Value $14 - 16$ based on the Selected Body rate mnemonic (e.g., - 0.000073
	Mnemonic Value 17 based on the Rate Error Magnitude mnemonic (e.g., 0.00013)
	Mnemonic Value 18 based on the Attitude Error Magnitude mnemonic (e.g., 0.00018)

 Table 4-42 OBC Calculated Attitude Data File (MOC-68) Description

4-206

A sample file name for the first generation of this data file has the following convention:

<File identifier>_<APID>_<Start Time>.<file extension>

where	File Identifier	=	[5 characters]; that identifies the file type identifier: File Type (MOC68); followed by the underscore (_) character
	APID	=	[3 ASCII Digits]; that identify the specific APID for this product
	Start Time	=	[14 ASCII Digits] Specifies the Orbiter day/time. YYYYDOY_HHMMSS where, YYYY => 4 ASCII digits of year DOY => 3 ASCII digits for day of year HHMMSS => 6 ASCII digits for hour, minutes, and seconds
	file extension	=	[3 characters] csv

For example, a sample text file of the OBC calculated Attitude data file is identified as: MOC68_240_2008320_021030.csv

Appendix B, Figure B.4-16 provides a sample of the data file containing the OBC Generated Attitude Data product.

In addition to the comma separated values ASCII file, the MOC provides a plotted version of the data in a "pdf" formatted file. A sample file name associated for this plotted data is:

MOC68_240_2008303_101500_plot.pdf.

4.10.6 (MOC-72) LRO Thruster Data

The LRO Thruster Data File is a comma-separated values (CSV) file created by the MOC's Trending system for use by the FD Maneuver Team. The Trending definition file defines the data mnemonics associated with this file.

The MOC creates this file using the APID 255 that contains the information related to the AT and NT Thrusters that LRO uses to perform maneuvers.

4.10.6.1 Product Details

Time interval	Variable based on Orbiter VC1 Data collection filters and per APID; nominally this will be at 5 Hz rate
File duration	Covers the duration of a specified maneuver; includes the maneuver slew to orientate the spacecraft before/after the maneuver includes +/- 5 minutes around the maneuver
File or Data Generation	1 file per orbit (for stored HK data files)
Frequency	1 per station contact (for real-time supports)
Delivery method (real-time, SCP, FTP, etc)	MOC scp-es the data file to the FD Communications Server (MOC scp pushes)
Data Volume	Variable; based on the APID and the downlink rate
Accuracy (if it applies)	Data accuracy will depend on the type of data within the specified APIDs (EU, Discrete, etc), as well as the sampling frequency of each individual mnemonic GMT provided in the data files for each row should contain accuracy up to the sub-second
Other pertinent details	MOT creates a set of files (1 file per orbit) that contains the requested data duration (with overlap both before and after the requested time period)

4.10.6.2 Format

The LRO Thruster Data is an ASCII formatted file in which the data fields are comma separated. The file contains eight lines of header information followed by one line of a data header definition that provided the descriptor information for the remaining data lines. The eight-line header data provides the following fields and information:

ASCII Report Input Definition File: C:\itps\Data\IDF\MOC72_THRUSTER.idf Report Date: 04/07/2008 DMDB file(s): C:\itps\Data\dmdb\LRODB_033108.dmdb Decom start: 2008/303/10:15:00 Decom stop: 2008/303/13:00:00

The file then contains a variable number of data lines that have the following format for each identified column.

4-208

Field name	Field Characteristics	
Field name Header Record	Year S/C Time SWACDHTIMEINMODE – Identifier for Mnemonic Name SWACDVTIMEINMODE – Identifier for Mnemonic Name SWACDHSYSANGMOMERRMAG – Identifier for Mnemonic Name SWACDVSENTPULSEAT1 – Identifier for Mnemonic Name SWACDVSENTPULSEAT2 – Identifier for Mnemonic Name SWACDVSENTPULSEAT3 – Identifier for Mnemonic Name SWACDVSENTPULSEAT4 – Identifier for Mnemonic Name SWACDVSENTPULSEAT5 – Identifier for Mnemonic Name SWACDVSENTPULSEAT6 – Identifier for Mnemonic Name SWACDVSENTPULSEAT7 – Identifier for Mnemonic Name SWACDVSENTPULSEAT3 – Identifier for Mnemonic Name SWACDVSENTPULSENT1 – Identifier for Mnemonic Name SWACDVSENTPULSENT2 – Identifier for Mnemonic Name SWACDVSENTPULSENT3 – Identifier for Mnemonic Name SWACDVSENTPULSENT4 – Identifier for Mnemonic Name SWACDVTHRONTIMEAT1 – Identifier for Mnemonic Name SWACDVTHRONTIMEAT3 – Identifier for Mnemonic Name SWACDVTHRONTIMEAT4 – Identifier for Mnemonic Name SWACDVTHRONTIMEAT5 – Identifier for Mnemonic Name SWACDVTHRONTIMEAT5 – Identifier for Mnemonic Name SWACDVTHRONTIMEAT6 – Identifier for Mnemonic Name SWACDVTHRONTIMEAT7 – Identifier for Mnemonic Name	
	SWACDVTHRONTIMENTIO - Identifier for Mnemonic Name SWACDVTHRONTIMENT2 – Identifier for Mnemonic Name SWACDVTHRONTIMENT3 – Identifier for Mnemonic Name SWACDVTHRONTIMENT4 – Identifier for Mnemonic Name	
Data Records 1 : N	 YYYY; (e.g., 2008) DDD-HH:MM:SS.mmm (e.g., 022-18:03:13.237) Mnemonic Value 1 – 2 based on the Time in Mode mnemonic (e.g., 24.799999) Mnemonic Value 3 based on the Target Q mnemonic (e.g., 0.259333) Mnemonic Value 4-12 based on the Attitude Q source (e.g., 2) Mnemonic Value 10 based on the Selected Q Type mnemonic (e.g., 1) Mnemonic Value 11 – 13 based on the Attitude Estimated Error mnemonic (e.g., 0.000015) Mnemonic Value 14 – 16 based on the Selected Body rate mnemonic (e.g., -0.000073_ Mnemonic Value 17 based on the Rate Error Magnitude mnemonic (e.g., 0.00013) 	
	Mnemonic Value 18based on the Attitude Error Magnitude mnemonic (e.g.,0.000018)	

Table 4-43 Propulsion Data File (MOC-72) Description

4-209

A sample file name for the first generation of this data file has the following convention:

<File identifier>_<File Name>_<Start Time>.<file extension>

where	File Identifier	=	[5 characters]; that identifies the file type identifier: File Type (MOC73); followed by the underscore (_) character
	File Name	=	[8 ASCII Characters]; that identify the specific File Name = THRUSTER
	Start Time	=	[14 ASCII Digits] Specifies the Orbiter day/time. YYYYDOY_HHMMSS where, YYYY => 4 ASCII digits of year DOY => 3 ASCII digits for day of year HHMMSS => 6 ASCII digits for hour, minutes, and seconds
	file extension	=	[3 characters] csv

For example, a sample text file of the LRO Propulsion Data file is identified as: MOC72_THRUSTER_2008303_101500.csv

Appendix B, Figure B.4-17 provides a sample of the data file containing the LRO Propulsion Data product.

In addition to the comma separated values ASCII file, the MOC provides a plotted version of the data in a "pdf" formatted file. A sample file name associated for this plotted data is:

MOC72_THRUSTER_2008303_101500.pdf.

4.10.7 (MOC-74) Predictive LRO Spacecraft Body Attitude File

This is an ASCII-formatted file that the MOC-AGS element generates that corresponds to the predictive SPICE CK file. This file is consistent with the MOC-41 product; it covers the same time span. AGS generates this file at the same frequency as the MOC-41 product. The difference is that this file format is the ASCII representation of the quaternion data and not the SPICE CK format.

4.10.7.1	Product Details	
----------	------------------------	--

Time interval	Data samples provided at 2 second increments
File duration	Next the next 7 day of predicted s/c attitude quaternion data in the body reference frame
File or Data Generation Frequency	Daily; Generated for delivery NLT 4 pm, Eastern
Delivery method (real-time, SCP, FTP, etc)	scp to FDF via the FD Communications Server; the backup uses the FDPC (MOC performs the scp push); using MOC subdirectory location

4-210

Data Volume	Approx 14.7 MBytes
Accuracy (if it applies)	supports accuracy requirement for slew maneuvers
Other pertinent details	NA

4.10.7.2 Format

This file is ASCII-formatted file that contains the predictive attitude quaternions. The file contains several header rows that provide information as to when the MOC-AGS element generated the file and the time span of the file.

The format for these header rows are defined as free-form ASCII text; the following table provides the header row definitions:

Row	Descriptor	Value
Row 1	Product generator field	stk.v.7.0 (hard-coded)
Row 2	Blank line separator	
Row 3	Default data designation	BEGIN Attitude (hard-coded)
Row 4	Blank line separator	
Row 5	Blank line separator	
Row 6	Number of data points values	NumberofAttitudePoints nnnnn; where this contains the total number of points contained within the file
Row 7	Blank line separator	
Row 8	Start time identifier	ScenarioEpoch DD MMM YYYY HH:MM:SS.s; where the form is in day of month, month, year, followed by the start Hours, minutes and seconds
Row 9	Referenced central body	CentralBody Earth (hard-coded)
Row 10	Attitude Quaternion representation	CoordinateAxes J2000 (hard-coded)
Row 11	Data field designations	AttitudeTimeQuaternions (hard-coded)

The file then contains 1:N data rows in which the fields are separated by blank spaces. The last line of the file is a free-form ASCII line that has the following hard-coded form:

END Attitude

Field name	Field Characteristics
Time	Time in seconds associated with the corresponding attitude quaternions SSSSS.mmmmmm => 5 ASCII digits representing the whole seconds of day followed by the period (.) separator and then 6 ASCII digits for the milliseconds of time
Attitude Q1 Value	ASCII value of the definitive quaternion Q1; in either of these two formats: 0.nnnnn or -0.nnnnn; where the – minus sign is used for negative values
Attitude Q2 Value	ASCII value of the definitive quaternion Q2; in either of these two formats: 0.nnnnn or -0.nnnnn; where the – minus sign is used for negative values
Attitude Q3 Value	ASCII value of the definitive quaternion Q3; in either of these two formats: 0.nnnnn or -0.nnnnn; where the – minus sign is used for negative values.
Attitude Q4 Value	ASCII value of the definitive quaternion Q4; in either of these two formats: 0.nnnnn or -0.nnnnn; where the – minus sign is used for negative values

The following table provides the details of the data row format:

The LRO MOC uses the following file-naming convention for MOC-transmitted files.

The filename consists of 27 characters, which includes the three character file extension name. There are underscores (_) between the file name designators and there is a period (.) between the file name and file extension fields. The form of the filename is as follows:

<System Identifier>_<Start Date>_<Stop Date>_<Version Identifier>.<file extension>

where	System Identifier	=	[5 ASCII digits and characters]; with the following system Identifier convention: mocnn; where nn=74 for this product identifier; followed by the underscore (_) character
	Start Date	=	[7 ASCII Digits] Specifies the file start date (followed by the underscore (_) character) YYYYDOY where, YYYY => 4 ASCII digits of start year DOY => 3 ASCII digits for start day of year
	Stop Date	=	[7 ASCII Digits] Specifies the file start date (followed by the underscore (_) character) yyyydoy where, yyyy => 4 ASCII digits of stop year doy => 3 ASCII digits for stop day of year
	Version Identifier	=	[3 ASCII Digits and characters] specifies the version number; vnn; where $nn = 01$ for the initial file version the version number monotonically increments for each new release (01, 02, 03, etc)

4-212

file extension = [1 ASCII characters] a

A sample LRO Predictive Attitude Quaternion Data file name is:

moc74_2008320_2008327_v01.a.

Appendix B, Figure B.4-18 provides a sample of a file containing the Definitive LRO Spacecraft Body Attitude product.

4.11 LRO MOC PRODUCT INTERFACES WITH CDDIS (VIA THE LOLA SOC)

This section describes the interface between the LRO MOC and CDDIS for use by all laser ranging sites that could use the LRO spacecraft for possible laser ranging activities. The LRO MOC uses the LOLA SOC as a conduit for transfer of this file.

4.11.1 (MOC-64) Laser Ranging GO Flag

This file provides the indication to any approved laser ranging site as to whether the LRO operations has identified that the LR sites can use the spacecraft to conduct laser ranging activities with the Orbiter.

4.11.1.1 Product Details

Time interval	NA
File duration	NA; file is correct until next update generated by MOC personnel
File or Data Generation Frequency	MOC updates file when state changes GO ==> NOGO or NOGO ==> GO
Delivery method (real-time, SCP, FTP, etc)	MOC scp pushes to LOLA SOC on the LRO file subdirectory LOLA then forwards the file (via FTP) to the CDDIS
Data Volume	Approx 10 bytes for the data file
Accuracy (if it applies)	NA
Other pertinent details	NA

4.11.1.2 Format

The file is an ASCII formatted file in which the fields are separated by blanks; the file contains the following data items that a laser ranging facility would use to identify whether LR activities could be attempted. Each field is separated by a single blank ASCII character

Field name	Field Characteristics
Spacecraft name	10 ASCII characters; (this field is left-justified and blank-filled to pad to 10 characters set to LRO
cospar	7 ASCII Digits; assigned by NORAD to represent the requested target; in this instance, LRO. The 7 ASCII digits are set as follows:
	First 2 represent the last 2 digits of the launch year; should be 09 for LRO The next 3 represent the launch day of year The last 2 represent the payload identifier in a multi launch configuration (or set to 01); should be assigned 01 for LRO
Spacecraft identifier	4 ASCII digits that identify the spacecraft identifier Set to 0059
Recheck time	2 ASCII Digit to reflect time interval (in minutes) that the facility needs to recheck the file; nominally set to 5 minutes; this field is blank padded; e.g., 5
Flag	4 ASCII characters to indicate if LR activities can be performed; this field is left- justified and blank-filled "go "==> LR activities are allowed "nogo" ==> LR Activities are prohibited
Text Summary	30 ASCII Characters of free form text that provides rationale for the "go" or "nogo" flag setting

The LRO MOC uses the following file-naming convention as negotiated with the laser Ranging community. This file name does not conform to the standard MOC-generated file name convention. The form of the filename is as follows:

<File name>.<file extension>

where	FileName	=	[3 characters] which are used to identify the File Name identify that this is the LRO Go Nogo Flag file	(lro), to
	file extension	=	[3 characters]; set to gng	

A sample Laser Ranging GO Flag file name is: lro.gng. A sample GO-Nogo Flag File is provided in Appendix B, Figure B.4-19.

4-214

Abbreviation/			
Acronym	DEFINITION		
Acq.	Acquisition		
ACS	Attitude Control System		
AGS	Attitude Ground System		
AOS	Advanced Orbiting Systems		
1105	Acquisition of Signal		
APID	Application Identification		
	application process identifier		
APL	Applied Physics Laboratory		
ASCII	American Standard Code for Information Interchange		
ATS	Absolute Time Sequence		
bMOC	backup Mission Operations Center		
Bps	bytes per second		
CCB	Configuration Control Board		
CCR	configuration change request		
CCSDS	Consultative Committee for Space Data Systems		
CDDIS	Crustal Dynamics Data Information System		
CFDP	CCSDS File Delivery Protocol		
CLCW	Command Link Control Word		
CLTU	command link transmission unit		
CM	Configuration Management		
CMD	Command		
СМО	Configuration Management Office		
CNE	Center Network Environment		
СОР	Command Operating Procedures		
COTS	commercial off the shelf		
CRaTER	Cosmic Ray Telescope for Effects of Radiation		
CRC	Cyclic Redundancy Check		
DDD	DSN Data Delivery		
DMR	Detailed Mission Requirements		
DPS	Data Processing System		
DSMC	Data Services Management Center		
DSN	Deep Space Network		
ECI	Earth Centered Inertial		
EELV	Evolved Expendable Launch Vehicle		
EOM	End of Mission		
FD	Flight Dynamics		
FDF	Flight Dynamics Facility		
FSW	Flight Software		
h	~		

Appendix A: – Abbreviations and Acronyms

A-1

Abbreviation/	
Acronym	DEFINITION
FSMF	Flight Software Maintenance Facility
FSWM	Flight Software Maintenance
FTP	File Transfer Protocol
GMT	Greenwich Mean Time
GOTS	Government off the shelf
GS	Ground System
GSE	Ground Support Equipment
GSFC	Goddard Space Flight Center
GTDS	Goddard Trajectory Determination System
HDR	High-rate Data Receiver
HGA	High Gain Antenna
I&T	Integration and Test
ICD	Interface Control Document
ID	Identification
IGSE	instrument ground support equipment
IIRV	improved interrange vector
IONet	IP Operational Network
IP	Internet Protocol
INP2	INternet Predict, version 2
ISP	FDF term; propellant specific impulse, which is a measure of the
	efficiency of the propulsion system
ITOS	Integrated Test and Operations System
ITRF	International Terrestrial Reference Frame
JPL	Jet Propulsion Laboratory
kbps	kilobits per second
km	kilometer
KSC	Kennedy Space Center
L&EO	Launch and Early Orbit
LAMP	Lyman-Alpha Mapping Project
LEND	Lunar Exploration Neutron Detector
LF	line feed
LOI	Lunar Orbit Insertion
LOLA	Lunar Orbiter Laser Altimeter
LOS	loss of signal
LRO	Lunar Reconnaissance Orbiter
LROC	Lunar Reconnaissance Orbiter Camera
LSB	least significant bit
MA	multiple access
Mb	megabits

Abbreviation/	
Acronym	DEFINITION
MB	megabytes
MCC	Mid Course Correction
МСО	Mission Concept of Operations
MCS	master channel sequence
ME	Mean Earth
MOC	Mission Operations Center
MOSP	Mission Operations Support Plan
МОТ	Mission Operations Team
MPS	Mission Planning System
MSB	most significant bit
NAC	Narrow Angle Camera
NAK	negative acknowledgement
NASA	National Aeronautics and Space Administration
Nascom	NASA Communications
NISN	NASA Integrated Services Network
NMC	Network Management Center
OD	Orbit Determination
OEM	Orbital Ephemeris Message
РА	principal axis – (a reference frame for a set of FDF generated products)
PB	playback
PDB	project database
PDS	Planetary Data System
PDU	Packet Data Unit
RF	Radio Frequency
RRCP	Receive, Range, Command Processor
RS	Reed-Solomon
RTS	Relative Time Sequence
S/C	Spacecraft
SA	Solar Array
SBC	Single Board Computer
SCID	spacecraft identifier
SCN	Space Communications Network
SCP	secure copy
SLE	Space Link Extension
SOC	Science Operations Center
SSR	Solid State Recorder
STGT	Second Tracking and Data Relay Satellite (TDRS) Ground Terminal
STDN	Spaceflight Tracking and Data Network
T&C	Telemetry, & Command

A-3

Abbreviation/					
Acronym	DEFINITION				
TBD	To Be Determined				
TBR	To Be Resolved				
TBS	To Be Supplied				
TC	Telecommand				
ТСР	Transmission Control Protocol				
TLM	Telemetry				
TRAMP	Testing, Reporting, and Maintenance Program				
TT&C	Tracking, Telemetry, & Command				
ULA	United Launch Alliance				
URL	Uniform Resource Locator				
USN	Universal Space Network				
USNO	United States Naval Observatory				
UTC	universal time code				
UTDF	universal tracking data format				
VC	Virtual Channel				
VCDU	Virtual Channel Data Unit				
VCID	virtual channel identifier				
WAC	Wide Angle Camera				
WAN	wide area network				
WGS	World Geodetic System				
WSC	White Sands Complex				
WSGT	White Sands Ground Terminal				

Appendix B – Sample Product Formats

Each subsystem will have individual sections in which this document will document a sample product, which can be used as a representative format for the specified product.

Sample FDF Products

B.1.1 (FDF-6) INP-2 Acquisition Data Sample

Inview Azimuth, Elevation, & Range

15 Aug 2007 10:51:33

Strand Name	YYYYDDD.HHMMSS (YYYYDDD)	Range (km)	RangeRate (km/sec)	Azimuth (deg)	Elevation (deg)
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.000000	359939.91492	-0.205789	80.749	39.798
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.000100	359927.52759	-0.207172	80,833	40.007
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.000200	359915.04983	-0.208803	80.917	40.215
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.000300	359902.46699	-0.210674	81.000	40.422
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.000400	359889.76480	-0.212780	81.082	40.629
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.000500	359876.92941	-0.215113	81.165	40.835
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.000600	359863.94742	-0.217665	81.247	41.041
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.000700	359850.80593	-0.220428	81.328	41.245
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.000800	359837.49254	-0.223393	81.410	41.449
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.000900	359823.99539	-0.226551	81.491	41.652
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.001000	359810.30323	-0.229892	81.573	41.855
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.001100	359796.40538	-0.233406	81.654	42.056
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.001200	359782.29179	-0.237082	81.736	42.257
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.001300	359767.95308	-0.240908	81.817	42.457
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.001400	359753.38059	-0.244875	81.899	42.657
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.001500	359738.56617	-0.248969	81.981	42.856
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.001600	359723.50256	-0.253179	82.063	43.054
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.001700	359708.18319	-0.257492	82.146	43.251
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.001800	359692.60220	-0.261897	82.228	43.447
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.001900	359676.75453	-0.266380	82.312	43.643
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.002000	359660.63586	-0.270928	82.396	43.839
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.002100	359644.24263	-0.275529	82.480	44.033
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.002200	359627.57211	-0.280169	82.566	44.227
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.002300	359610.62231	-0.284836	82.651	44.420
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.002400	359593.39207 359575.88100	-0.289515	82.738 82.826	44.613 44.805
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.002500		-0.294195		
Facility/LRIS to Satellite/0059/Sensor/Omni Facility/LRIS to Satellite/0059/Sensor/Omni	2009037.002600 2009037.002700	359558.08951 359540.01881	-0.298860 -0.303500	82.914 83.003	44.997 45.188
Facility/LRIS to Satellite/0059/Sensor/Omni Facility/LRIS to Satellite/0059/Sensor/Omni	2009037.002800	359521.67089	-0.303500	83.093	45.379
Facility/LRIS to Satellite/0059/Sensor/Omni Facility/LRIS to Satellite/0059/Sensor/Omni	2009037.002900	359503.04851	-0.312646	83.185	45.569
Facility/LRIS to Satellite/0059/Sensor/Omni Facility/LRIS to Satellite/0059/Sensor/Omni	2009037.002900	359484.15521	-0.317127	83.277	45.759
Facility/LRIS to Satellite/0059/Sensor/Omni Facility/LRIS to Satellite/0059/Sensor/Omni	2009037.003000	359464.99531	-0.321531	83.370	45.949
Facility/LRIS to Satellite/0059/Sensor/Omni Facility/LRIS to Satellite/0059/Sensor/Omni	2009037.003100	359464.59331	-0.325844	83.465	46.138
Facility/LRIS to Satellite/0059/Sensor/Omni	2009037.003300	359425.89664	-0.330054	83.560	46.327
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.003400	359405.97019	-0.334150	83.657	46.515
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.003500	359385.80172	-0.338119	83.756	46.704
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.003600	359365.39915	-0.341951	83.855	46.892
Facility/LRIS to Satellite/0059/Sensor/Omni	2009037.003700	359344.77107	-0.345635	83.956	47.080
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.003800	359323.92671	-0.349159	84.058	47.268
Facility/LR1S to Satellite/0059/Sensor/Omni	2009037.003900	359302.87593	-0.352514	84.162	47.456

Figure B.1-1 Sample INP-2 Acquisition Data File

B.1.2 (FDF-10) OEM Acquisition Data Sample

CCSDS_OEM_VERS CREATION_DATE = 1.0 = 2007-05-09T15:04:34 ORIGINATOR = GSFC COMMENT This is a sample OEM. The vectors in this OEM do not necessarily reflect the LRO mission orbit. The metadata, comments, and precision of the vector data do not necessarily reflect what will appear in the COMMENT COMMENT COMMENT final product. META_START OBJECT_NAME OBJECT_ID CENTER_NAME = LBO = 2008-059A = EARTH REF_FRAME = EME2000
 REF_FRAME
 -INTERPOLATION = HE INTERPOLATION_DEGREE = 11 META_STOP COMMENT These vectors are relative to the Earth central body. The vector components are X Y Z VX VY VZ. The units are km and km/sec. COMMENT 2009-02-06T00:00:00.000 15321.376603 163596.415680 324050.071767 0.040540 0.044236 -1.2119732009-02-06T00:01:00.000 324052.709218 324055.314077 163525.417634 163457.974300 0.097497 0.151460 0.20290 0.249855 0.294034 0.3371783 0.405152 0.434731 0.460443 0.460443 0.482220 0.500004 0.513747 0.523413 0.097497 0.043682 -1.154147 15325.532334 2009-02-06T00:02:00.000 15333.016376 -1.093508 2009-02-06T00:03:00.000 324057.887675 15343.644863 163394.249891 0.042640 -1.030209 2009-02-06T00:04:00.000 2009-02-06T00:05:00.000 -0.964412 15357.225841 15373.559745 324060.431404 324062.946707 163334.399175 163278.567074 0.042155 0.041693 2009-02-06T00:06:00.000 2009-02-06T00:07:00.000 15392.439901 15413.653044 324065.435077 324067.898056 163226.888289 163179.486956 0.041257 0.040847 0.040463 -0.825998 -0.753732 324067.898036 324070.337227 324072.754212 324075.150669 324077.528286 2009-02-06T00:08:00.000 15436.979855 163136.476320 -0.679672 15462.195512 15489.070255 0.040107 0.039779 -0.604006 -0.526926 2009-02-06T00:09:00.000 163097.958438 2009-02-06T00:10:00.000 163064.023914 15517.369970 15546.856774 15577.289620 2009-02-06T00:11:00.000 2009-02-06T00:12:00.000 163034.751655 163010.208662 0.039479 -0.448630 324079.888776 0.039208 -0.369317 2009-02-06T00:13:00.000 15577.289620 324082.233876 162990.449846 15608.424908 324084.565341 162975.517878 324082.233876 162990.449846 0.038966 -0.289191 2009-02-06T00:14:00.000 0.038754 -0.208457

Figure B.1-2 Sample OEM Acquisition Data File

B.1.3 (FDF-7) LR Prediction Data Sample

H1 CPF 01	FDF 2007 08 15	13 0001 lro	Test ephem	
H2 1234567	0059 12345	2009 02 06 00 00 00		60 0 4 00 0 (
Н9				
10 1 54868		0 211307984.793	-246490796.156	164692537.853
10 1 54868		0 210242434.669	-247351616.410	164777217.690
10 1 54868		0 209176816.621	-248204338.375	164862310.071
10 1 54868 10 1 54868		0 208111274.884 0 207045943.068	-249049052.189 -249885858.741	164947585.340 165032813.345
10 1 54868		0 205980943.870	-250714869.166	165117764.045
10 1 54868		0 203930343.370	-251536204.643	165202208.155
10 1 54868		0 203852376.505	-252349995.626	165285917.709
10 1 54868	480.000000	0 202788995.642	-253156381.569	165368666.690
10 1 54868	540.000000	0 201726321.389	-253955510.291	165450231.581
10 1 54868	600.000000	0 200664416.667	-254747537.613	165530392.064
10 1 54868	660.000000	0 199603331.935	-255532626.591	165608931.472
10 1 54868		0 198543104.876	-256310947.057	165685637.430
10 1 54868		0 197483760.419	-257082674.955	165760302.346
10 1 54868		0 196425310.411	-257847991.868	165832724.110
10 1 54868		0 195367753.970	-258607084.190 -259360142.633	165902706.420 165970059.423
10 1 54868 10 1 54868		0 194311077.245 0 193255253.676	-260107361.475	166034600.091
10 1 54868		0 192200243.784	-260848938.041	166096152.919
10 1 54868		0 191145995.661	-261585071.894	166154550.104
10 1 54868		0 190092444.963	-262315964.240	166209632.141
10 1 54868		0 189039515.221	-263041817.248	166261248.095
10 1 54868		0 187987117.878	-263762833.418	166309256.251
10 1 54868	1380.000000	0 186935152.894	-264479214.850	166353524.143
10 1 54868		0 185883508.843	-265191162.649	166393929.087
10 1 54868		0 184832063.432	-265898876.237	166430358.335
10 1 54868		0 183780683.661	-266602552.735	166462709.654
10 1 54868		0 182729226.507	-267302386.324	166490891.199
10 1 54868 10 1 54868		0 181677539.245 0 180625459.982	-267998567.616 -268691283.100	166514821.977 166534431.867
10 1 54868		0 179572818.042	-269380714.480	166549662.106
10 1 54868		0 178519434.704	-270067038.170	166560465.033
10 1 54868		0 177465123.611	-270750424.729	166566804.442
10 1 54868		0 176409691.450	-271431038.356	166568655.487
10 1 54868		0 175352938.439	-272109036.303	166566005.056
10 1 54868		0 174294659.076	-272784568.514	166558851.391
10 1 54868	2160.000000	0 173234642.726	-273457777.078	166547204.330
10 1 54868		0 172172674.274	-274128795.901	166531085.093
10 1 54868		0 171108534.786	-274797750.139	166510526.544
10 1 54868		0 170042002.245	-275464756.001	166485572.687
10 1 54868		0 168972852.180	-276129920.315	166456278.806
10 1 54868 10 1 54868		0 167900858.408 0 166825793.736	-276793340.281 -277455103.035	166422711.136 166384946.995
10 1 54868		0 165747430.649	-278115285.606	166343074.200
10 1 04000	2300.000000	100/4/400.049	-270115205.000	100343074.200

Figure B.1-3 Sample Laser Ranging Prediction Data File

B.1.4 (FDF-8) Space Network Acquisition Data Sample

bv'⊡□

□□ð□□È□□□□□□ÿÿÿÿ030000001010GIIRV WSGT 121100590100117712000000039 -000041468706-000006199623-000004529372107 000000037203 00000009681-000000352704061 00017040040000000 1383563045 ITERM GRTS

Figure B.1-4 Sample Space Network Acquisition Data File

B-4

B.1.5 (FDF-9) Ground Station View Period Predicts Data Sample

This first instance identifies the instance where there is valid view period information for a specific station.

Max Elev Time (YYYYD	Max Elevation (deg)	Start Pass	Duration (sec)	Stop Time (YYYYDDD)	Start Time (YYYYDDD)
2009037.010	44.992	13	4046.914	2009037.010727	2009037.000000
2009037.031	69.387	14	6351.504	2009037.031204	2009037.012612
2009037.044	81.133	15	6352.668	2009037.051642	2009037.033050
2009037.053	76.357	16	6371.701	2009037.072130	2009037.053518
2009037.073	52.705	17	6405.418	2009037.092628	2009037.073943
2009037.094	28.298	18	6441.684	2009037.113135	2009037.094413
2009037.235	18.553	24	4031.377	2009037.235853	2009037.225142
2009038.020	42.406	25	6037.879	2009038.020258	2009038.002220
2009038.040	66.562	26	5979.685	2009038.040704	2009038.022725
2009038.054	79.195	27	5940.245	2009038.061116	2009038.043216
2009038.063	75.002	28	5912.629	2009038.081532	2009038.063700
2009038.084	51.992	29	5886.725	2009038.101953	2009038.084146
2009038.104	27.272	30	5852.249	2009038.122413	2009038.104641
2009039.004	14.397	36	2723.697	2009039.004849	2009039.000325
2009039.025	38.334	37	5402.213	2009039.025248	2009039.012246
2009039.045	62.188	38	5367.113	2009039.045650	2009039.032723
2009039.064	75.272	39	5341.546	2009039.070055	2009039.053154
2009039.073	71.642	40	5320.628	2009039.090503	2009039.073623
2009039.094	50.025	41	5298.894	2009039.110913	2009039.094054
2009039.114	25.236	42	5271.982	2009039.131322	2009039.114530
2009040.013	9.870	49	1273.958	2009040.013734	2009040.011620
2009040.034	33.952	49	5020.120	2009040.034134	2009040.021754
2009040.052	54.405	50	3979.953	2009040.052834	2009040.042214
2009040.062	63.343	51	3979.953 58.902	2009040.062730	2009040.062631
2009040.083	66.841	52	3/.651	2009040.083126	2009040.083048
2009040.095	55.021	53	4.841 14.920	2009040.095345	2009040.095340
2009040.103	47.106	53			2009040.103507
2009040.115	31.115	54	16.699		2009040.115734
2009040.140	6.476	55	28.137	2009040.140157	2009040.140129
2009041.043	29.615	61	4817.914	2009041.043008	2009041.030950
2009041.063	52.078	62	4808.905	2009041.063411	2009041.051402
2009041.083	63.450	63	4802.000	2009041.083815	2009041.071813
2009041.092	60.916	64	4795.861	2009041.104219	2009041.092223
2009041.112 2009041.133	43.055 18.996	65 66	4789.252 3966.659	2009041.124624 2009041.143654	2009041.112635 2009041.133047

This following sample identifies the instance where FDF indicates that there is no valid view period information for the indicated station, as well as valid view period information for other stations.

tart Time (YYYYDDD)	Stop Time (YYYYDDD)	Duration (sec)	Start Pass	Max Elevation (deg)	Max Elev Time (YYYYDDD
2008307.122859 2008307.174042 2008308.124239 2008308.161316	2008307.140347 2008307.185618 2008308.142115 2008308.191931	5687.616 4536.769 5916.679 11175.330	1 2 6 7	19.025 16.543 17.328 24.256	2008307.14034 2008307.17404 2008308.14211 2008308.16290
acility-KU1S-To-Satel	23 Apr 2008 15:36:50 lite-0059-Sensor-Omni				
o Access Found					

No Access Found

Figure B.1-5 Sample Ground Station View Period Predicts Data File

B-5

B.1.6 (FDF-3) LRO Beta Angle Predict File Sample

05-27-2008 14:58:37

Beta Angle and Quadrant (1-4) for Satellite-0059.

YYYYDDD.HHMMSS	Beta Angle (Deg)	Quadrant
2009076.000000	3.45	2
2009076.060000	3.20	2
2009076.120000	2.95	2
	2.67	2
2009077.000000	2.41	2
2009077.060000	2.16	2
	1.95	2
	1.72	2
2009078.000000	1.46	2
2009078.060000	1.18	2
	0.92	2
2009078.180000	0.69	2
	0.47	2
2009079.060000	0.23	2
2009079.120000	-0.02	3
2009079.180000		3
	-0.46	3
2009080.060000	-0.64	3
2009080.120000		3
2009080.180000	-0.96	3

Figure B.1-6 Sample LRO Beta Angle Predict File

17 May 2006 14:17:02

B.1.7 (FDF-4) LRO Definitive Ephemeris File Sample

Satellite-0059: J2000 ECI Position & Velocity

z (km/sec)	vy (km/sec)	vx (km/sec)	z (km)	y (km)	x (km)	YYYYDDD.HHMMSS (YYYYDDD)
1.630310	-0.000000	-0.000000	-0.000000	0.032259	1848.296000	2009015.000000
1.628029	-0.000006	-0.086092	97.772978	0.032083	1845.712665	2009015.000100
1.621195	-0.000014	-0.171944	195.272438	0.031495	1837.969800	2009015.000200
1.609829	-0.000024	-0.257310	292.225701	0.030349	1825.089151	2009015.000300
1.593966	-0.000041	-0.341951	388.361936	0.028439	1807.107126	2009015.000400
1.573653	-0.000069	-0.425631	483.412657	0.025230	1784.074296	2009015.000500
1.548940	-0.000110	-0.508118	577.112283	0.019928	1756.055261	2009015.000600
1.519894	-0.000164	-0.589176	669.198774	0.011736	1723.128698	2009015.000700
1.486595	-0.000222	-0.668572	759.414456	0.000155	1685.387342	2009015.000800
1.449145	-0.000274	-0.746080	847.507170	-0.014761	1642.937776	2009015.000900
1.407656	-0.000313	-0.821485	933.231118	-0.032435	1595.899789	2009015.001000
1.362247	-0.000335	-0.894582	1016.347520	-0.051952	1544.405748	2009015.001100
1.313045	-0.000345	-0.965169	1096.624913	-0.072406	1488.600174	2009015.001200
1.260185	-0.000346	-1.033051	1173.839741	-0.093136	1428.639547	2009015.001300
1.203819	-0.000343	-1.098034	1247.777028	-0.113807	1364.692055	2009015.001400
1.144107	-0.000338	-1.159937	1318.231143	-0.134237	1296.937072	2009015.001500
1.081219	-0.000330	-1.218589	1385.006382	-0.154300	1225.564599	2009015.001600
1.015333	-0.000321	-1.273827	1447.917478	-0.173859	1150.774647	2009015.001700
0.946634	-0.000310	-1.325501	1506.790085	-0.192798	1072.776596	2009015.001800
0.875313	-0.000296	-1.373467	1561.461117	-0.210985	991.788671	2009015.001900
0.801569	-0.000281	-1.417589	1611.779163	-0.228285	908.037442	2009015.002000
0.725615	-0.000267	-1.457740	1657.605195	-0.244704	821.757438	2009015.002100
0.647672	-0.000257	-1.493814	1698.813204	-0.260388	733.190158	2009015.002200
0.567962	-0.000248	-1.525721	1735.290528	-0.275527	642.583065	2009015.002300
0.486701	-0.000237	-1.553378	1766.937598	-0.290073	550.188659	2009015.002400
0.404109	-0.000221	-1.576712	1793.667983	-0.303832	456.264145	2009015.002500
0.320415	-0.000205	-1.595657	1815.408640	-0.316615	361.070979	2009015.002600
0.235853	-0.000190	-1.610159	1832.100433	-0.328452	264.874191	2009015.002700
0.150660	-0.000174	-1.620180	1843.698381	-0.339384	167.941555	2009015.002800
0.065078	-0.000155	-1.625695	1850.171881	-0.349303	70.542736	2009015.002900
-0.020653	-0.000130	-1.626696	1851.504800	-0.357873	-27.051565	2009015.003000
-0.106297	-0.000098	-1.623187 -1.615182	1847.695274	-0.364727 -0.369589	-124.570582 -221.744100	2009015.003100
-0.191625	-0.000064 -0.000028	-1.602701	1838.755451 1824.711237	-0.369589	-318.302923	2009015.003200 2009015.003300
-0.360400	0.000028	-1.585777	1805.602593	-0.372928	-413.979383	2009015.003300
-0.443376						
-0.525102						
-0.605351						
-0.683903						
-0.760537						
-0.835041						
-0.835041						
-0.976861						
-1.043799						
-1.107845						
	0.000045 0.000123 0.000129 0.000189 0.000212 0.000225 0.000225 0.000261 0.000291 0.000322	-1.564456 -1.538802 -1.508888 -1.474797 -1.436627 -1.394489 -1.348504 -1.298802 -1.245517 -1.188789	1781.483609 1752.422450 1718.500914 1679.814230 1636.470880 1588.592356 1536.312588 1479.777284 1419.143468 1354.579222	-0.371342 -0.367493 -0.361295 -0.352802 -0.342332 -0.330276 -0.316871 -0.302004 -0.285447 -0.267042	-508.508186 -601.627404 -693.079182 -782.610393 -869.973261 -954.926290 -1037.234983 -1116.672431 -1193.019563 -1266.065583	2009015.003500 2009015.003600 2009015.003700 2009015.003900 2009015.003900 2009015.004000 2009015.004100 2009015.004200 2009015.004300 2009015.004400

Figure B.1-7 Sample LRO Definitive Ephemeris File

B.1.8 (FDF-13) Lunar Orbit Ascending and Descending Node Predicts Sample

01-07-2008 16:31:33

Nodal Crossings for Satellite-0059.

YYYYDDD.HHMMSS	Node A=Ascending D=Descending ====================================	Longitude (deg E)	Orbit Number	Lighting
2009077.005306	А	282.57	219	Day
2009077.014940	D	102.05		Night
2009077.024610	A	281.54	220	Day
2009077.034243	D	101.02		Night
2009077.043913	A	280.50	221	Day
2009077.053546	D	99.99		Night
2009077.063216	A	279.47	222	Day
2009077.072849	D	98.95		Night
2009077.082519	A	278.44	223	Day
2009077.092152	D	97.92		Night
2009077.101822	A	277.40	224	Day
2009077.111456	D	96.88		Night
2009077.121126	A	276.37	225	Day
2009077.130759	D	95.85		Night
2009077.140429	A	275.33	226	Day
2009077.150102	D	94.82		Night
2009077.155732	A	274.30	227	Day
2009077.165405	D	93.78		Night
2009077.175035	A	273.27	228	Day
2009077.184708	D	92.75		Night
2009077.194338	A	272.23	229	Day
2009077.204012	D	91.71		Night
2009077.213641	A	271.20	230	Day
2009077.223315	D	90.68		Night
2009077.232945	A	270.16	231	Day
2009078.002618	D	89.65		Night
2009078.012248	A	269.13	232	Day
2009078.021921	D	88.61		Night
2009078.031551	A	268.10	233	Day
2009078.041224	D	87.58		Night
2009078.050854	A	267.06	234	Day
2009078.060527	D	86.55		Night
2009078.070157	A	266.03	235	Day
2009078.075831	D	85.51		Night
2009078.085500	A	264.99	236	Day
2009078.095134	D	84.48		Night
2009078.104804	A	263.96	237	Day
2009078.114437	D	83.44		Night
2009078.124107	A	262.93	238	Day
2009078.133740	D	82.41		Night

Figure B.1-8 Sample Lunar Orbit Ascending and Descending Node Predicts File

B.1.9 (FDF-14) Lunar Orbit Terminator Crossing Predicts Sample

17-05-2006 20:08:08

Terminator Crossings for Satellite-0059.

YYYYDDD.HHMMSS	Flag D=Entering Lunar Day N=Entering Lunar Nic
2009015.000000	D
2009015.002850	N
2009015.010318	D
2009015.022800	N
2009015.030232	D
2009015.042711 2009015.050146 2009015.062621 2009015.070100 2009015.082531 2009015.090014	N D N D D
2009015.102440 2009015.105928 2009015.122350 2009015.125842 2009015.142259 2009015.145755	N D N D D
2009015.162208	N
2009015.165709	D
2009015.182117	N
2009015.185623	D
2009015.202026	N
2009015.205537	D
2009015.221935 2009015.225451 2009016.001844 2009016.005405 2009016.021753 2009016.025319	N D N D D
2009016.041702 2009016.045233 2009016.061611 2009016.065148 2009016.081521 2009016.085103	N D N D D
2009016.101431	N
2009016.105017	D
2009016.121341	N
2009016.124932	D
2009016.141251	N
2009016.144847	D
2009016.161202	N
2009016.164803	D
2009016.181113	N
2009016.184718	D
2009016.201024	N
2009016.204633	D
2009016.220935	N
2009016.224548	D
2009017.000846	N
2009017.004503	D

Figure B.1-9 Sample Lunar Orbit Terminator Crossing Predicts Data File

B-9

B.1.10 (FDF-15) Mission Eclipse Predicts Data Sample

Satellite-0059: Mission Eclipse Predicts

tart Time YYYYDDD.HHMMSS (YYYYDDD)	Stop Time YYYYDDD.HHMMSS (YYYYDDD)	Current Condition	Duration (sec)	Occultation	Total Duration (sec
2009266.000000	2009266.001816	Umbra	1095.78	Moon	1106.2
2009266.001816	2009266.001826	Penumbra	10.42	Moon	1106.2
2009266.012401	2009266.012411	Penumbra	10.60	Moon	2849.8
2009266.012411	2009266.021120	Umbra	2828.83	Moon	2849.8
2009266.021120	2009266.021131	Penumbra	10.42	Moon	2849.8
2009266.031705	2009266.031715	Penumbra	10.60	Moon	2850.3
2009266.031715	2009266.040425	Umbra	2829.37	Moon	2850.3
2009266.040425	2009266.040435	Penumbra	10.42	Moon	2850.3
2009266.051009	2009266.051019	Penumbra	10.60	Moon	2850.8
2009266.051019	2009266.055729	Umbra	2829.83	Moon	2850.8
2009266.055729	2009266.055740	Penumbra	10.41	Moon	2850.8
2009266.070313	2009266.070323	Penumbra	10.60	Moon	2851.1
2009266.070323	2009266.075033	Umbra	2830.16	Moon	2851.1
2009266.075033	2009266.075044	Penumbra	10.41	Moon	2851.1
2009266.085616	2009266.085627	Penumbra	10.59	Moon	2851.3
2009266.085627	2009266.094337	Umbra	2830.36	Moon	2851.3
2009266.094337	2009266.094347	Penumbra	10.41	Moon	2851.3
2009266.104919	2009266.104930	Penumbra	10.59	Moon	2851.4
2009266.104930	2009266.113640	Umbra	2830.46	Moon	2851.4
2009266.113640	2009266.113651	Penumbra	10.40	Moon	2851.4
2009266.124222	2009266.124233	Penumbra	10.58	Moon	2851.4
2009266.124233	2009266.132943	Umbra	2830.49	Moon	2851.4
2009266.132943	2009266.132954	Penumbra	10.40	Moon	2851.4
2009266.143526	2009266.143536	Penumbra	10.56	Moon	2851.4
2009266.143536	2009266.152247	Umbra	2830.52	Moon	2851.4
2009266.152247	2009266.152257	Penumbra	10.39	Moon	2851.4
2009266.162829	2009266.162840	Penumbra	10.55	Moon	2851.5
2009266.162840	2009266.171550	Umbra	2830.59	Moon	2851.5
2009266.171550	2009266.171601	Penumbra	10.38	Moon	2851.5

Figure B.1-10 Sample Mission Eclipse Predicts Data File

B-10

CHECK WITH LRO DATABASE AT: https://lunarngin.gsfc.nasa.gov TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE.

09 Sep 2008 11:13:33

B.1.11 (FDF-16) Lunar Ephemeris Data Sample

Planet-Moon: Relative J2000 ECI Position & Velocity

YYYYDDD.HHMMSS (YYYYDDD)	x (km)	y (km)	z (km)	vx (km/sec)	vy (km/sec)	vz (km/sec)
2009015.000000	-364820.125341	84869.059299	13609.487116	-0.298719	-0.886814	-0.471533
2009015.001000	-364998.853021	84336.857553	13326.550503	-0.297040	-0.887191	-0.471589
2009015.002000	-365176.572957	83804.430501	13043.580642	-0.295360	-0.887565	-0.471644
2009015.003000	-365353.285002	83271.779684	12760.578321	-0.293680	-0.887937	-0.471697
2009015.004000	-365528.989010	82738.906640	12477.544330	-0.292000	-0.888306	-0.471749
2009015.005000	-365703.684842	82205.812911	12194.479459	-0.290319	-0.888673	-0.471800
2009015.010000	-365877.372346	81672.500071	11911.384515	-0.288639	-0.889037	-0.471850
2009015.011000	-366050.051411	81138.969586	11628.260248	-0.286958	-0.889398	-0.471898
2009015.012000	-366221.721894	80605.223032	11345.107465	-0.285277	-0.889757	-0.471945
2009015.013000	-366392.383665	80071.261946	11061.926952	-0.283596	-0.890113	-0.471990
2009015.014000	-366562.036598	79537.087865	10778.719498	-0.281914	-0.890467	-0.472034
2009015.015000	-366730.680571	79002.702326	10495.485887	-0.280232	-0.890818	-0.472077
2009015.020000	-366898.315463	78468.106866	10212.226905	-0.278551	-0.891167	-0.472119
2009015.021000	-367064.941157	77933.303021	9928.943338	-0.276868	-0.891513	-0.472159
2009015.022000	-367230.557540	77398.292326	9645.635971	-0.275186	-0.891856	-0.472198
2009015.023000	-367395.164491	76863.076352	9362.305606	-0.273504	-0.892197	-0.472236
2009015.024000	-367558.761923	76327.656562	9078.952990	-0.271821	-0.892535	-0.472272
2009015.025000	-367721.349720	75792.034525	8795.578924	-0.270138	-0.892871	-0.472308
2009015.030000	-367882.927782	75256.211775	8512.184192	-0.268455	-0.893204	-0.472341
2009015.031000	-368043.496009	74720.189846	8228.769576	-0.266772	-0.893535	-0.472374
2009015.032000	-368203.054306	74183.970269	7945.335857	-0.265089	-0.893863	-0.472405
2009015.033000	-368361.602580	73647.554576	7661.883818	-0.263405	-0.894189	-0.472435
2009015.034000	-368519.140742	73110.944299	7378.414238	-0.261722	-0.894512	-0.472463
2009015.035000	-368675.668704	72574.140969	7094.927898	-0.260038	-0.894832	-0.472491
2009015.040000	-368831.186374	72037.146152	6811.425596	-0.258354	-0.895150	-0.472517
2009015.041000	-368985.693691	71499.961306	6527.908074	-0.256670	-0.895466	-0.472541
2009015.042000	-369139.190567	70962.587997	6244.376131	-0.254986	-0.895778	-0.472565
2009015.043000	-369291.676929	70425.027752	5960.830543	-0.253302	-0.896089	-0.472587
2009015.044000	-369443.152703	69887.282101	5677.272088	-0.251617	-0.896396	-0.472608
2009015.045000	-369593.617821	69349.352570	5393.701544	-0.249933	-0.896702	-0.472627
2009015.050000	-369743.072218	68811.240688	5110.119688	-0.248248	-0.897004	-0.472645
2009015.051000	-369891.515832	68272.947979	4826.527296	-0.246564	-0.897304	-0.472662
2009015.052000	-370038.948602	67734.475972	4542.925142	-0.244879	-0.897602	-0.472678
2009015.053000	-370185.370461	67195.826226	4259.314022	-0.243194	-0.897897	-0.472692
2009015.054000	-370330.781376	66657.000195	3975.694672	-0.241509	-0.898189	-0.472705
2009015.055000	-370475.181286	66117.999438	3692.067885	-0.239824	-0.898479	-0.472717
2009015.060000	-370618.570144	65578.825480	3408.434434	-0.238139	-0.898767	-0.472728
2009015.061000	-370760.947903	65039.479843	3124.795093	-0.236454	-0.899052	-0.472737

Figure B.1-11 Sample Lunar Ephemeris Data File

B.1.12 (FDF-17) Orbiter Thruster Maneuver Plans Data Sample

Maneuver Plan

Maneuve	er:	ICG): 2008 141 SK01b n/s): 6.699	Burn Dura	stop (UTCG): tion (s):	119.331	6 Post-burn fu Fuel mass us	el mass (kg): ed (kg):	267.343 official 263.505 estimated 3.838 estimated 1270.050 estimated
		le Name: r File Name:	LRO MOC SIM	109 SKO1b Planni	ing	-	-	
Maneuve	er Coni	figuration:	Bank NT ACS	1 OFF OFF	2 OFF Off-Pul <i>s</i> ed	Prop Mode: ACS Stop Mode:	PressureReg dV	
Initia	l Thrus	ster Data:						
				Calculated		Thrust	Effective	Duty
NT1	Bank 1	Press (Pa) 1861584.5	Temp (degC) 25.0	Isp (sec)	Thrust (N)	Efficiency	Thrust (N)	Cycle (%)
NT2	2	1861584.5	25.0					
NT3	1	1861584.5	25.0					
NT4	2	1861584.5	25.0					
AT1	ī	1861584.5	25.0					
AT2	2	1861584.5	25.0	231.441	13.409	1.000000	13.409	58,600
AT3	1	1861584.5	25.0					
AT4	2	1861584.5	25.0	231.441	18.787	1.000000	18.787	82.100
AT5	1	1861584.5	25.0					
AT6	2	1861584.5	25.0	238.702	25.307	1.000000	25.307	100.000
AT7	1	1861584.5	25.0					
AT8	2	1861584.5	25.0	231.441	16.270	1.000000	16.270	71.100
Final :	Thrust	er Data:						
				Calculated		Thrust	Effective	Duty
	Bank	Press (Pa)	Temp (degC)	Isp (sec)	Thrust (N)	Efficiency	Thrust (N)	Cycle (%)
NT1	1	1861584.5	25.0					
NT2	2	1861584.5	25.0					
NT3	1	1861584.5	25.0					
NT4	2	1861584.5	25.0					
AT1	1	1861584.5	25.0					
AT2	2	1861584.5	25.0	231.441	13.409	1.000000	13.409	58.600
AT3	1	1861584.5	25.0					
AT4	2	1861584.5	25.0	231.441	18.787	1.000000	18.787	82.100
AT5	1	1861584.5	25.0					
AT6	2	1861584.5	25.0	238.702	25.307	1.000000	25.307	100.000
AT7	1	1861584.5	25.0		10.070	1 000000	10.070	71 100
AT8	2	1861584.5	25.0	231.441	16.270	1.000000	16.270	71.100

Figure B.1-12 Sample Orbiter Thruster Maneuver Plans Data File

B.1.13 (FDF-19) Orbiter Post Maneuver Report Data Sample

Maneuver Plan

Maneuve	er:	CCG): 2008 043 LOI1 n/s): 501.477	Burn		2008 307 12:48:1 2008 307 13:23:4 2128.890	6 Post-burn fu Fuel mass us	ael mass (kg): sed (kg):	508.902 estimated
		le Name: r File Name:	Pre-launch	le LOI1 Produc nominal or - Nominal	t	Average be i	100 (Ag)	17221140 0501
Maneuve	er Coni	figuration:	Bank NT ACS	1 ON On-pulsed	2 ON On-pulsed	Prop Mode: ACS Stop Mode:	: PressureReg : Time	
Initial	l Thrus	ster Data:		Calculated	Calculated	Thrust	Effective	Duty
	Bank	Press (Pa)	Temp (deqC)	Isp (sec)		Efficiency	Thrust (N)	Cycle (%)
NT1	1	1861584.5	25.0	232.209		1.000000	94.667	100.000
NT2	2	1861584.5	25.0	232.209		1.000000	94.667	100.000
NT3	1	1861584.5	25.0	232.209	94.667	1.000000	94.667	100.000
NT4	2	1861584.5	25.0	232.209	94.667	1.000000	94.667	
AT1	1	1861584.5	25.0	213.878	2.137	1.000000	2.137	
AT2	2	1861584.5	25.0	213.878	1.035	1.000000	1.035	4.600
AT3	1	1861584.5	25.0	213.878	0.360	1.000000	0.360	1.600
AT4	2	1861584.5	25.0	213.878	0.157	1.000000	0.157	0.700
AT5	1	1861584.5	25.0	213.878	5.646	1.000000	5.646	25,100
AT6	2	1861584.5	25.0	213.878	5.489	1.000000	5.489	24.400
AT7	1	1861584.5	25.0	213.878	5.781	1.000000	5.781	25.700
AT8	2	1861584.5	25.0	213.878	5.669	1.000000	5.669	25.200
Final 1	Thruste	er Data:						
				Calculated		Thrust	Effective	Duty
E	Bank	Press (Pa)	Temp (degC)	Isp (sec)		Efficiency	Thrust (N)	Cycle (%)
NT1	1	1861584.5	25.0	232.209		1.000000	94.667	100.000
NT2	2	1861584.5	25.0	232.209		1.000000	94.667	100.000
NT3	1	1861584.5	25.0	232.209	94.667	1.000000	94.667	100.000
NT4	2	1861584.5	25.0	232.209	94.667	1.000000	94.667	100.000
AT1	1	1861584.5	25.0	213.878	2.137	1.000000	2.137	9.500
AT2	2	1861584.5	25.0	213.878	1.035	1.000000	1.035	4.600
AT3	1	1861584.5	25.0	213.878	0.360	1.000000	0.360	1.600
AT4	2	1861584.5	25.0	213.878	0.157	1.000000	0.157	0.700
AT5	1	1861584.5	25.0	213.878	5.646	1.000000	5.646	25.100
AT6	2	1861584.5	25.0	213.878	5.489	1.000000	5.489	24.400
AT7	1	1861584.5	25.0	213.878	5.781	1.000000	5.781	25.700
AT8	2	1861584.5	25.0	213.878	5.669	1.000000	5.669	25.200

Figure B.1-13 Sample Orbiter Post Maneuver Report Data File

LRO Ext. Sys. ICD for (LRGS)

(FDF-18) Post Separation Report Data Sample B.1.14

FDF18 - LRO Nomina	al Separation Versus	Actual Sample Pro	oduct							
SAT NO. 1234567	SATELLITE ID									
TIME INTERVAL OF		MDD HHMMSS.S 028 102354.0	YYYYMMDD HHMMSS.S 20081028 102500.0							
TIME INTERVAL OF COMPARISON WAS RESET FROM INPUT REQUESTED TIMESPAN										
EPOCH AND ELEMENTS CENTRAL BODY IS E	G SET 1 FRN 2 ZARTH ELEMENTS ARE									
	COW HHMMSS.SSS 102354.146	ELL								
X (KM)	Ү (КМ)	Z (KM)	XDOT (KM/S)	YDOT (KM/S)						
-364.944200	5795.93241	3039.06887	-10.7884373	-1.31878371	1.26070620					
SMA (KM)	ECC	INC (DEG)	RAAN (DEG)	AP (DEG)	MA (DEG)					
209034.998	.968643926	28.5265980	19.2908226	75.9355802	.802981825E-03					
P (MIN)	PH (KM)	APH (KM)	TA (DEG)							
15852.1523	176.380561	405137.343	.202911138							
	G SET 2 FRN 8 EARTH ELEMENTS ARE									
		ELL								
	HHMMSS.SSS 102354.146									
X (KM)	Ү (КМ)	Z (KM)	XDOT (KM/S)							
-364.944201	5795.93241	3039.06887	-10.7884373	-1.31878371	1.26070620					
SMA (KM)	ECC	INC (DEG)	RAAN (DEG)	AP (DEG)	MA (DEG)					
209034.999	.968643926	28.5265980	19.2908226	75.9355802	.802981894E-03					
P (MIN)	PH (KM)	APH (KM)	TA (DEG)							
15852.1524	176.380561	405137.344	.202911157							

Figure B.1-14 Sample Post Separation Report Data File (Page 1 of 2)

CHECK WITH LRO DATABASE AT: https://lunarngin.gsfc.nasa.gov to verify that this is the correct version prior to use.

POSITION DIFFERENCE VECTOR COMPONENTS								T	RUE ANOMALY	
YYYYMMDD HHMMS 20081028 10235 20081028 10240 1	4.00 .655453	(M) 0+04 .655	(KM) 453D+04	DIAL (KM) 407517D-06 491652D-06 E PROGRAM	69	TRACK (KM) 95334D-06 01169D-06		TRACK (KM) 104801D-05 102295D-05	DELTA-R (KM) .132208D-05 .133408D-05 PAGE 45	TA (DEG) .188955D+00 .591436D+01
		1	EPHEMERIS COMP	ARISON SUMMA	RY REPO	DRT				
		MINI YYYYMMDD	MUM POSITION D: HHMMSS.SSS	IFFERENCE (KM)		MA YYYYMM		POSITION DI HMMSS.SSS	FFERENCE (KM)	
	RADIAL CROSS TRACK ALONG TRACK DELTA-R	20081028 20081028 20081028 20081028	102354.000 102354.000 102400.000 102354.000	.407516 695333 .102294 .132207	7D-06 8D-05	200810 200810 200810 200810	28 1 28 1	L02400.000 L02400.000 L02354.000 L02400.000	.4916515D-06 7011691D-06 .1048010D-05 .1334085D-05	
		MINI	NUM VELOCITY D	IFFERENCE		MA	XIMUM	VELOCITY DI	FFERENCE	
	RADIAL CROSS TRACK ALONG TRACK DELTA-V	20081028 20081028	HHMMSS.SSS 102354.000 102354.000 102354.000 102354.000	(KM/SEC .217754 .633108 200206 .302502	8D-11 5D-12 1D-11	YYYYMM 200810 200810 200810 200810)28 1)28 1)28 1	HHMMSS.SSS L02400.000 L02400.000 L02400.000 L02400.000	(KM/SEC) 4563068D-09 1354891D-09 .5197528D-09 .7047809D-09	
			POSITION RM:	5	VELOCI	ITY RMS				
			(KM)			(KM/SEC)				
		RADIAL CROSS TRACK ALONG TRACK TOTAL	.45155D-00 .69826D-00 .10356D-00 .13281D-00	6 5	.9580	56D-09 06D-10 52D-09 36D-09				

Figure B.1-15 Sample Post Separation Report Data File (Page 2 of 2)

29 May 2008 08:58:26

B.1.15 (FDF-20) Predicted LRO Ephemeris File Sample

Satellite-0059: Earth-centered J2000 Inertial Position & Velocity

YYYYDDD.HHMMSS (YYYYDDD)	x (km)	у (km)	z (km)	x (km/sec)	y (km/sec)	z (km/sec)
2009077.000000	-76242.216843	-351492.701477	-181938.358603	0.941014	0.438886	-1.553193
2009077.000100	-76182.995465	-351466.381242	-182031.514985	1.033019	0.438121	-1.551236
2009077.000200	-76118.259030	-351440.167159	-182124.412447	1.124795	0.435348	-1.544556
2009077.000300	-76048.031606	-351414.179108	-182216.767595	1.215998	0.430594	-1.533172
2009077.000400	-75972.355781	-351388.534927	-182308.300791	1.306375	0.423885	-1.517167
2009077.000500	-75891.287752	-351363.352501	-182398.735664	1.395691	0.415199	-1.496565
2009077.000600	-75804.900261	-351338.750234	-182487.797692	1.483641	0.404554	-1.471420
2009077.000700	-75713.283932	-351314.844288	-182575.216830	1.569938	0.391996	-1.441816
2009077.000800	-75616.546329	-351291.747936	-182660.728398	1.654307	0.377577	-1.407853
2009077.000900	-75514.810462	-351269.571290	-182744.074083	1.736508	0.361347	-1.369635
2009077.001000	-75408.213811	-351248.421684	-182825.001507	1.816288	0.343350	-1.327265
2009077.001100	-75296.909280	-351228.403497	-182903.265581	1.893399	0.323643	-1.280880
2009077.001200	-75181.063938	-351209.617610	-182978.629446	1.967608	0.302282	-1.230614
2009077.001300	-75060.859306	-351192.161437	-183050.864701	2.038670	0.279332	-1.176622
2009077.001400	-74936.490706	-351176.128067	-183119.752926	2.106372	0.254868	-1.119073
2009077.001500	-74808.166101	-351161.606143	-183185.085671	2.170501	0.228961	-1.058137
2009077.001600	-74676.106163	-351148.680251	-183246.665507	2.230851	0.201680	-0.994009
2009077.001700	-74540.543397	-351137.430368	-183304.306770	2.287230	0.173110	-0.926884
2009077.001800	-74401.721595	-351127.930660	-183357.835935	2.339458	0.143359	-0.856975
2009077.001900	-74259.894407	-351120.248896	-183407.092354	2.387385	0.112527	-0.784494
2009077.002000	-74115.324688	-351114.447144	-183451.928038	2.430849	0.080709	-0.709657
2009077.002100	-73968.284544	-351110.581374	-183492.209178	2.469716	0.048013	-0.632718
2009077.002200	-73819.052493	-351108.701452	-183527.816771	2.503897	0.014525	-0.553906
2009077.002300	-73667.913103	-351108.852564	-183558.644705	2.533271	-0.019670	-0.473436
2009077.002400	-73515.158471	-351111.073377	-183584.601069	2.557722	-0.054443	-0.391567

Figure B.1-16 Sample Predicted LRO Ephemeris File

B-16

B.1.16 (FDF-21) Predicted Lunar Ground Track File Sample

Satellite-0059: LLA Position

29 May 2008 08:59:43

YYYYDDD.HHMMSS (YYYYDDD)	Lon (degEast)	Lat (deg)	Alt (km)	Magnitude (km/sec)
2009077.000000	102.893	-0.978	51.146	1.656
2009077.000100	102.848		50.997	1.656
2009077.000200	102.803	-7.343	50.845	1.656
2009077.000300	102.757	-10.527	50.691	1.656
2009077.000400	102.710	-13.710	50.538	1.656
2009077.000500	102.662	-16.895	50.384	1.656
2009077.000600	102.613	-20.079	50.231	1.656
2009077.000700	102.562	-23.265	50.078	1.656
2009077.000800	102.509	-26.451	49.927	1.657
2009077.000900	102.454	-29.637	49.779	1.657
2009077.001000	102.396	-32.824	49.634	1.657
2009077.001100	102.333	-36.011	49.494	1.657
2009077.001200	102.267	-39.198	49.358	1.657
2009077.001300	102.195	-42.386	49.227	1.657
2009077.001400	102.116		49.100	1.657
2009077.001500	102.029	-48.764	48.979	1.657
2009077.001600	101.931	-51.953	48.863	1.657
2009077.001700	101.820	-55.142	48.753	1.658
2009077.001800	101.691	-58.332	48.650	1.658
2009077.001900	101.538	-61.522	48.553	1.658
2009077.002000	101.352	-64.712	48.464	1.658
2009077.002100	101.119	-67.902	48.382	1.658
2009077.002200	100.815	-71.091	48.310	1.658
2009077.002300	100.395	-74.281		1.658
2009077.002400	99.773	-77.469	48.189	1.658
2009077.002500	98.740		48.140	1.658
2009077.002600	96.660	-83.836	48.100	1.658
2009077.002700	90.232		48.072	1.658
2009077.002800	351.225	-89.303	48.052	1.658
2009077.002900	293.289		48.040	1.658
2009077.003000	288.193	-83.329	48.035	1.658

Figure B.1-17 Sample Predicted Lunar Ground Track File

B.1.17 (FDF-22) Definitive Lunar Ground Track File Sample

Satellite-0059: LLA Position

29 May 2008 09:02:30

YYYYDDD.HHMMSS (YYYYDDD)	Lon (degEast)	Lat (deg)	Alt (km)	Magnitude (km/sec)
2009076.000000	301.594	-81.992	46.649	1.659
2009076.000100	299.999	-78.805		1.659
2009076.000200			46.808	1.659
2009076.000300	298.520	-72.421	46.905	1.659
2009076.000400	298.111		47.013	1.659
2009076.000500	297.805	-66.033	47.133	1.659
2009076.000600	297.565	-62.839	47.266	1.659
2009076.000700	297.370	-59.645	47.410	1.659
2009076.000800	297.208	-56.451	47.563	1.659
2009076.000900	297.069	-53.257	47.724	1.659
2009076.001000	296.949		47.894	1.658
2009076.001100	296.842		48.071	1.658
2009076.001200			48.255	1.658
2009076.001300		-40.489		1.658
2009076.001400	296.580	-37.298	48.647	1.658
2009076.001500	296.506		48.853	1.658
			49.065	1.657
	296.371		49.282	1.657
2009076.001800	296.309	-24.543		1.657
2009076.001900	296.249	-21.355		1.657
2009076.002000	296.192		49.958	1.657
2009076.002100			50.188	1.656
2009076.002200			50.419	1.656
2009076.002300	296.028	-8.615		1.656
2009076.002400		-5.432	50.884	1.656
			51.119	1.656
2009076.002600			51.353	1.655
2009076.002700	295.819	4.112	51.586	1.655
2009076.002800	295.767	7.292	51.816	1.655
2009076.002900	295.714		52.044	1.655
2009076.003000	295.661	13.649	52.267	1.654

Figure B.1-18 Sample Definitive Lunar Ground Track File

29 May 2008 09:03:39

B.1.18 (FDF-23) Orbiter State Vector Table Sample

Satellite-0059: J2000 ECI Position & Velocity

YYYYDDD.HHMMSS (YYYYDDD)	x (km)	у (km)	z (km)	x (km/sec)	y (km/sec)	z (km/sec)
2009077.000000	-76242.216843	-351492.701477	-181938.358603	0.941014	0.438886	-1.553193
2009077.001000	-75408.213811	-351248.421684	-182825.001507	1.816288	0.343350	-1.327265
2009077.002000	-74115.324688	-351114.447144	-183451.928038	2.430849	0.080709	-0.709657
2009077.003000	-72581.580324	-351169.162548	-183634.921587	2.598172	-0.269198	0.114131
2009077.004000	-71098.217354	-351433.784403	-183323.697737	2.267202	-0.600814	0.894920
2009077.005000	-69941.422957	-351865.982351	-182617.439231	1.538133	-0.813046	1.396616
2009077.010000	-69288.140014	-352372.321361	-181734.635857	0.632616	-0.841626	1.468361
2009077.011000	-69162.696424	-352837.138254	-180946.197605	-0.175984	-0.678242	1.090631
2009077.012000	-69430.798578	-353157.385416	-180493.357087	-0.645645	-0.372198	0.378865
2009077.013000	-69840.862177	-353273.441410	-180515.854479	-0.637182	-0.015054	-0.453153
2009077.014000	-70099.442411	-353186.637229	-181011.208533	-0.153621	0.286707	-1.156953
2009077.015000	-69958.179118	-352958.733542	-181835.681545	0.661501	0.443229	-1.521736
2009077.020000	-69287.718480	-352693.558010	-182746.415656	1.565010	0.407701	-1.436616
2009077.021000	-68117.357682	-352506.215340	-183473.526532	2.284622	0.190443	-0.925332
2009077.022000	-66627.332066	-352488.487702	-183801.574147	2.602745	-0.142851	-0.140774
2009077.023000	-65094.773200	-352680.779422	-183635.011615	2.422584	-0.491634	0.680521
2009077.024000	-63810.120366	-353060.141310	-183027.650437	1.797859	-0.749976	1.290303
2009077.025000	-62988.852532	-353546.524390	-182166.610678	0.918227	-0.839116	1.504306
2009077.030000	-62705.840954	-354027.515057	-181315.280872	0.050201	-0.732447	1.259168
2009077.031000	-62873.529808	-354392.392231	-180733.054589	-0.545387	-0.462150	0.630821
2009077.032000	-63269.434228	-354565.444412	-180597.365611	-0.691202	-0.109456	-0.190910
2009077.033000	-63603.486017	-354528.391454	-180951.501881	-0.344714	0.220242	-0.960014
2009077.034000	-63604.456161	-354325.616548	-181692.336369	0.390743	0.428822	-1.446652
2009077.035000	-63100.357463	-354050.837162	-182600.840349	1.295769	0.454125	-1.504333
2009077.040000	-62070.152887	-353819.250454	-183406.965748	2.098913	0.288543	-1.113990
2009077.041000	-60651.175237	-353733.139144	-183870.551038	2.558009	-0.018220	-0.391800
2009077.042000	-59098.214093	-353850.874768	-183853.884283	2.533786	-0.373392	0.445383
2009077.043000	-57707.076152	-354169.426282	-183363.892203	2.032378	-0.670001	1.144990
2009077.044000	-56725.186366	-354624.679973	-182550.564995	1.205219	-0.817136	1.495164
2009077.045000	-56275.925929	-355110.862599	-181661.674107	0.303233	-0.770503	1.390487

Figure B.1-19 Sample LRO State Vector Table Data File

B.1.19 (FDF-25) Thruster Calibration Data File Sample

Maneuver Plan

Maneuve	er:	CCG): 2008 043 LOI1 n/s): 501.477	Burn			6 Post-burn fu Fuel mass us	el mass (kg): ed (kg):	889.578 official 508.902 estimated 380.676 estimated 1722.440 estimated
Notes: LOII Post-Maneuver Calibration Product Ephemeris File Name: Pre-launch nominal Thrust Vector File Name: Thrust Vector - Nominal								
Maneuve	er Coni	figuration:	Bank NT ACS	1 ON On-pulsed	2 ON On-pulsed	Prop Mode: ACS Stop Mode:	PressureReg Time	
Initial	L Thrus	ster Data:		Calculated	Calculated	Thrust	Effective	Dutu
-		- (-)	m (1 m)					Duty
	Bank	Press (Pa)	Temp (degC)	Isp (sec)	Thrust (N)	Efficiency	Thrust (N)	Cycle (%)
NT1	1	1861584.5	25.0	232.209	94.667	1.000000	94.667	100.000
NT2	2	1861584.5	25.0	232.209		1.000000	94.667	100.000
NT3 NT4	1	1861584.5 1861584.5	25.0 25.0	232.209 232.209	94.667 94.667	1.000000	94.667	100.000 100.000
	2					1.000000	94.667	
AT1		1861584.5	25.0	213.878	2.137	1.000000	2.137	
AT2	2	1861584.5	25.0	213.878	1.035	1.000000	1.035	4.600
AT3	1	1861584.5	25.0	213.878	0.360	1.000000	0.360	1.600
AT4	2	1861584.5	25.0	213.878	0.157	1.000000	0.157	0.700
AT5	1	1861584.5	25.0	213.878	5.646	1.000000	5.646	25.100
AT6	2	1861584.5	25.0	213.878	5.489	1.000000	5.489	24.400
AT7	1	1861584.5	25.0	213.878	5.781	1.000000	5.781	25.700
AT8	2	1861584.5	25.0	213.878	5.669	1.000000	5.669	25.200
Final 1	Thruste	er Data:						
				Calculated		Thrust	Effective	Duty
	Bank	Press (Pa)	Temp (degC)	Isp (sec)	Thrust (N)	Efficiency	Thrust (N)	Cycle (%)
NT1	1	1861584.5	25.0	232.209		1.000000	94.667	100.000
NT2	2	1861584.5	25.0	232.209	94.667	1.000000	94.667	100.000
NT3	1	1861584.5	25.0	232.209	94.667	1.000000	94.667	100.000
NT4	2	1861584.5	25.0	232.209	94.667	1.000000	94.667	100.000
AT1	1	1861584.5	25.0	213.878	2.137	1.000000	2.137	9.500
AT2	2	1861584.5	25.0	213.878	1.035	1.000000	1.035	4.600
AT3	1	1861584.5	25.0	213.878	0.360	1.000000	0.360	1.600
AT4	2	1861584.5	25.0	213.878	0.157	1.000000	0.157	0.700
AT5	1	1861584.5	25.0	213.878	5.646	1.000000	5.646	25.100
AT6	2	1861584.5	25.0	213.878	5.489	1.000000	5.489	24.400
AT7	1	1861584.5	25.0	213.878	5.781	1.000000	5.781	25.700
AT8	2	1861584.5	25.0	213.878	5.669	1.000000	5.669	25.200

Figure B.1-20 Sample Thruster Calibration Data File

B.1.20 (FDF-37) Solar Conjunction File Sample

08-15-2007 14:27:00

Solar Conjunctions for Satellite-0059.

Station	Start Time (YYYYDDD)	Stop Time (YYYYDDD)	Duration (sec)	Solar Interference	Туре
D34K	2009039.162701	2009040.112044	68022.630	Uplink	1
USPS	2009039.204011	2009040.213229	89537.509	Uplink	1
WU1S	2009040.051043	2009040.173223	44500.262	Uplink	1
WU2S	2009040.051043	2009040.173223	44500.265	Uplink	1
KU1S	2009040.055651	2009040.173223	41731.978	Uplink	1
KU2S	2009040.055954	2009040.173223	41549.020	Uplink	1
USHS	2009040.090346	2009040.091650	784.118	Uplink	1
USHS	2009040.091727	2009040.112044	7396.024	Uplink	1
DS34	2009040.095646	2009040.112044	5037.725	Uplink	1
DS45	2009040.095646	2009040.112044	5037.725	Uplink	1
DS24	2009040.105827	2009040.112044	1336.583	Uplink	1
DS27	2009040.105827	2009040.112044	1336.291	Uplink	1
LR1S	2009040.110452	2009040.112044	951.199	Uplink	1
SDSS	2009040.110452	2009040.112044	951.199	Uplink	1
USHS	2009040.112120	2009040.132437	7397.081	Uplink	1
DS24	2009040.112136	2009040.132437	7380.385	Uplink	1
DS27	2009040.112136	2009040.132437	7380.410	Uplink	1
USHS	2009040.132512	2009040.152830	7397.642	Uplink	1
SDSS	2009055.145142	2009056.141710	84328.174	Downlink	2
DS34	2009055.211738	2009055.224358	5179.910	Downlink	2
DS45	2009055.211738	2009055.224358	5179.946	Downlink	2
DS24	2009055.215501	2009055.224338	2916.308	Downlink	2 2 2 2 2
DS27	2009055.215507	2009055.224338	2910.524	Downlink	2
D34K	2009055.230834	2009056.004759	5965.482	Downlink	2
DS34	2009055.230834	2009056.004759	5965.482	Downlink	2
DS45	2009055.230834	2009056.004759	5965.607	Downlink	2
DS24	2009055.232255	2009056.151533	57158.182	Downlink	2
DS27	2009055.232258	2009056.151533	57155.065	Downlink	2
USPS	2009055.234336	2009056.000313	1176.427	Downlink	2
USHS	2009055.235325	2009056.004744	3259.037	Downlink	2 2 2
D34K	2009056.012518	2009056.025202	5203.533	Downlink	
DS34	2009056.012518	2009056.025202	5203.535	Downlink	2
DS45	2009056.012518	2009056.025202	5203.623	Downlink	2

Figure B.1-21 Sample Solar Conjunction File

B.1.21 (FDF-38) Target Thruster Vector File Sample

2008303.122912	0.118487277	-0.932008226	-0.342522164
2008303.122913	0.118488053	-0.932009027	-0.342519715
2008303.122914	0.118488829	-0.932009828	-0.342517266
2008303.122915	0.118489605	-0.932010630	-0.342514816
2008303.122916	0.118490380	-0.932011431	-0.342512367
2008303.122917	0.118491156	-0.932012233	-0.342509918
2008303.122918	0.118491932	-0.932013034	-0.342507469
2008303.122919	0.118492707	-0.932013835	-0.342505020
2008303.122920	0.118493483	-0.932014637	-0.342502571

Figure B.1-22 Sample Target Thruster Vector File

B.1.22 (FDF-39) LR Ground Station View Period Sample

Facility-GGAO-To-Satel	lite-0059-Sensor-HGA				17 Apr 2008 10:18:20		
Start Time (YYYYDDD)	Stop Time (YYYYDDD)	Duration (sec)	Start Pass	Max Elevation (deg)	Max Elev Time (YYYYDDD)		
2009077.071450	2009077.081311	3500.719	221	12.990	2009077.081311		
2009077.090901	2009077.100723	3502.686	222	21,993	2009077.100723		
2009077.110304	2009077.120131	3506.336	223	23.486	2009077.110304		
2009077.125706	2009077.135542	3516.211	224	18.297	2009077.125706		
2009077.145118	2009077.145223	65.680	225	5.169	2009077.145118		
2009078.081951	2009078.091750	3479.474	234	15.644	2009078.091750		
2009078.101351	2009078.111142	3470.950	235	23.851	2009078.111142		
2009078.120747	2009078.130535	3467.607	236	23.938	2009078.120747		
2009078.140148	2009078.145934	3465.870	237	17.658	2009078.140148		
2009079.085831	2009079.091215	824.777	247	10.298	2009079.091215		
2009079.094113	2009079.095514	841.311	248	16.214	2009079.095514		
2009079.105146	2009079.110501	795.251	248	22.530	2009079.110501		
2009079.113505	2009079.114829	803.603	249	25.596	2009079.114829		
2009079.124505	2009079.125757	771,948	249	26.243	2009079.124505		
2009079.132857	2009079.134146	769.280	250	25.816	2009079.132857		
2009079.143827	2009079.145057	750.264	250	20,906	2009079.143827		
2009079.152252	2009079.153507	735.030	251	16.875	2009079.152252		
2009079.163150	2009079.164357	726.905	251	7.477	2009079.163150		
2009080.093050	2009080.093924	513.556	260	9.866	2009080.093924		
2009080.101921	2009080.102704	462.716	261	17.013	2009080.102704		
2009080.112359	2009080.113222	502.881	261	23.880	2009080.113222		
2009080.121238	2009080.122014	455.702	262	28.037	2009080.122014		
2009080.131711	2009080.132524	492.920	262	29.631	2009080.132524		
2009080.140556	2009080.141326	450.371	263	29.528	2009080.140556		
2009080.151025	2009080.151827	482.600	263	25.357	2009080.151025		
2009080.155915	2009080.160640	445.252	264	21.023	2009080.155915		
2009080.170339	2009080.171131	471.235	264	12.331	2009080.170339		
2009080.175235	2009080.175416	100.537	265	5.279	2009080.175235		
2009081.100201	2009081.100805	363.935	273	10.327	2009081.100805		
2009081.105159	2009081.105811	372.803	274	18.442	2009081.105811		
2009081.115510	2009081.120109	358.868	274	25.984	2009081.120109		
2009081.124513	2009081.125121	368.348	275	31.175	2009081.125121		
2009081.134821	2009081.135416	355.082	275	33.715	2009081.135416		
2009081.143829	2009081.144433	363.595	276	34.151	2009081.143829		
2009081.154133	2009081.154725	351.803	276	30.558	2009081.154133		
2009081.163146	2009081.163745	358.297	277	26.230	2009081.163146		

Figure B.1-23 Sample LR Ground Station View Period File

FDF-44 Trajectory Insertion Data

24 April 2009, 1340 GMT

#

Date of launch vehicle separation = 04242009 (MMDDYYYY)

Time of launch vehicle separation = 123516 (HHMMSS)

Semi-major Axis = 123456.54321(Km)

Eccentricity = 0.2346(Unitless)

Inclination = 93.2345(Degrees)

Right Ascension of Ascending Node = 270.0345 (Degrees)

Argument of perigee = 123.8765 (Degrees)

True Anomaly = 88.2345 (Degrees)

Figure B.1-24 Sample Trajectory Insertion Data File

Space Communications Data Products

B.1.24 (GNSO-1) Station Support Schedules Sample

W0907-984,DS54,2009040001308,2009040013734,TR24,48,S1 W0907-356,WU1S,2009040001308,2009040013739,TR4,48,S1 W0907-744,WU2S,2009040001308,2009040013739,TR4,48,S1 W0907-632,KU1S,2009040001315,2009040013746,TR46,48,S1 W0907-688,KU2S,2009040001315,2009040013746,TR4,48,S1 W0907-1020,DS54,2009040002437,2009040012618,TR24,48,S1 W0907-393, WU1S, 2009040002439, 2009040012621, TR46, 48, S1 W0907-781,WU2S,2009040002439,2009040012621,TR46,48,S1 W0907-660,KU1S,2009040002446,2009040012629,TR46,48,S1 W0907-716,KU2S,2009040002446,2009040012629,TR46,48,S1 W0907-318,SDSS,2009040003858,2009040012627,TR4,48,S1 W0907-209,WS1S,2009040003858,2009040012627,TR46,48,S1 W0907-278,SDSS,2009040003858,2009040013731,TR4,48,S1 W0907-169,WS1S,2009040003858,2009040013731,TR4,48,S1 W0907-859,DS24,2009040011620,2009040012630,TR24,49,S1 W0907-818,DS24,2009040011620,2009040013734,TR24,49,S1 W0907-985,DS54,2009040021730,2009040034141,TR25,49,S1 W0907-357, WU1S, 2009040021732, 2009040034145, TR5, 49, S1 W0907-745,WU2S,2009040021732,2009040034145,TR5,49,S1 W0907-633,KU1S,2009040021742,2009040034151,TR45,49,S1 W0907-689,KU2S,2009040021742,2009040034151,TR5,49,S1 W0907-279,SDSS,2009040021751,2009040034132,TR5,49,S1 W0907-170,WS1S,2009040021751,2009040034132,TR5,49,S1 W0907-819,DS24,2009040021754,2009040034134,TR25,49,S1 W0907-1021,DS54,2009040022850,2009040033033,TR25,49,S1 W0907-394,WU1S,2009040022854,2009040033036,TR45,49,S1 W0907-782,WU2S,2009040022854,2009040033036,TR45,49,S1 W0907-319.SDSS.2009040022858.2009040033038.TR5.49.S1 W0907-247,WS1K,2009040022858,2009040033038,TR1,49,K1 W0907-210,WS1S,2009040022858,2009040033038,TR45,49,S1

Figure B.2-1 Sample Station Support Schedules File

B-25

B.1.25 (WS1-2) and (USN-2) Station Weather Data Sample

The following sample is valid for both the WS1 station and any of the USN stations. The following example is for the WS1 White Sands station.

20080828 241 WS1S 17:07 23.9 0853.4 057.0 01 17:12 24.2 0853.4 055.0 04 17:22 24.4 0853.4 055.0 04 17:22 24.4 0853.4 055.0 06 17:22 24.7 0853.4 055.0 06 17:32 25.1 0853.4 054.0 11 17:37 25.3 0853.4 053.0 09 17:42 25.0 0853.1 054.0 04 17:52 25.2 0853.1 054.0 04 17:57 25.0 0853.1 054.0 08 18:02 25.0 0853.1 054.0 08 18:02 25.0 0853.1 054.0 08 18:02 25.0 0853.1 054.0 08 18:12 24.7 0852.7 055.0 11 18:12 24.7 0852.7 054.0 08 18:22 24.5 0852.7 055.0 04

Figure B.2-2 Sample Station Weather Data File

B-26

B.1.26 (WS1-8) Ka-Band RF Receiver Data File Sample

00000,2008-231-18:14:47.780389,GSHDRIFLVL1,	,-044.499912261,
00000,2008-231-18:14:48.763424,GSHDRIFLVL1,	,-044.511623382,
00000,2008-231-18:14:49.851322,GSHDRIFLVL1,	,-044.597850799,
00000,2008-231-18:14:50.834353,GSHDRIFLVL1,	,-044.490699768,
00000,2008-231-18:14:51.817386,GSHDRIFLVL1,	,-044.615703582,
00000,2008-231-18:14:52.695573,GSHDRIFLVL1,	,-044.553192138,
00000,2008-231-18:14:53.796577,GSHDRIFLVL1,	,-044.472484588,
00000,2008-231-18:14:54.779620,GSHDRIFLVL1,	,-044.644672393,
00000,2008-231-18:14:55.762663,GSHDRIFLVL1,	,-044.481876373,
00000,2008-231-18:14:56.850567,GSHDRIFLVL1,	,-044.591571807,
00000,2008-231-18:14:57.833612,GSHDRIFLVL1,	,-044.505058288,
00000,2008-231-18:14:58.934617,GSHDRIFLVL1,	,-044.576263427,
00000,2008-231-18:15:00.022511,GSHDRIFLVL1,	,-044.497474670,
00000,2008-231-18:15:01.005551,GSHDRIFLVL1,	,-044.506710052,
00000,2008-231-18:15:01.988590,GSHDRIFLVL1,	,-044.524097442,
00000,2008-231-18:15:02.761913,GSHDRIFLVL1,	,-044.514175415,
00000,2008-231-18:15:02.761913,GSHDRIFLVL1,	,-044.481136322,
00000,2008-231-18:15:04.950818,GSHDRIFLVL1,	,-044.410137176,
00000,2008-231-18:15:05.933853,GSHDRIFLVL1,	,-044.407169342,
00000,2008-231-18:15:07.021756,GSHDRIFLVL1,	,-044.573669433,
00000,2008-231-18:15:08.004798,GSHDRIFLVL1,	,-044.631370544,
00000,2008-231-18:15:08.987831,GSHDRIFLVL1,	,-044.547801971,
00000,2008-231-18:15:09.761155,GSHDRIFLVL1,	,-044.460884094,
00000,2008-231-18:15:11.071878,GSHDRIFLVL1,	,-044.614196777,
00000,2008-231-18:15:11.950055,GSHDRIFLVL1,	,-044.556739807,
00000,2008-231-18:15:12.933093,GSHDRIFLVL1,	,-044.406509399,
00000,2008-231-18:15:14.020996,GSHDRIFLVL1,	,-044.474006652,
00000,2008-231-18:15:15.004024,GSHDRIFLVL1,	,-044.486103057,
00000,2008-231-18:15:16.105036,GSHDRIFLVL1,	,-044.586395263,
00000,2008-231-18:15:17.088078,GSHDRIFLVL1,	,-044.513668060,
00000,2008-231-18:15:18.175970,GSHDRIFLVL1,	,-044.584320068,
00000,2008-231-18:15:18.949295,GSHDRIFLVL1,	,-044.629341125,
00000,2008-231-18:15:19.932330,GSHDRIFLVL1,	,-044.565578460,
00000,2008-231-18:15:21.020232,GSHDRIFLVL1,	,-044.558731079,
00000,2008-231-18:15:22.003273,GSHDRIFLVL1,	,-044.531181335,
00000,2008-231-18:15:23.104277,GSHDRIFLVL1,	,-044.425022125,

Figure B.2-3 Sample Ka-Band RF Receiver Data File

Science Operations Center Products

B.1.27 (CRaTER-1) (DLRE-1) (LAMP-1) (LEND-1) (LOLA-1) (LROC-1) (MIRF-1) LRO Operations Activity Request Sample

OAR Request Date: 2009-06-21 OAR Approved Date: NA OAR Planned Execution Date:NA OAR Status: NA OAR Status Detail: NA OAR Name: DLRE Loads (FP-RT-088) OAR Number: NA OAR Requested By: JOHN DOE OAR Requestor Phone Number:123-456-7890 OAR Requestor Email Address: jdoe@nasa.gov OAR Request Org:DLRE SOC OAR Type: INSTRUMENT OPERATION OAR Execution Window: NET 2009-06-24 OAR Constraints: Execute according to constraints identified in Flight Procedure Document OAR Sequence: Execute FP-RT-088. Use the file DLRE FSWLOAD ramping patch 2009090 V2.ld accompanying this request when requested by Step number 8 in the referenced flight procedure.

Figure B.3-1 Sample LRO Operations Activity Request File

B.1.28 (LOLA-4), (LROC-4), (MIRF-4) Target Requests LOLA Specific Target Request Sample

LOLA_TARGETS_2009077_2009077_V00.txt
05-29-2008 @ 12:00:00
1 TARGET REQUEST SLEW EVENT GENERATED
#
2009-077-13:00:00, +01.800, 900

LROC Specific Target Request Sample

```
# LROC_TARGETS2009077_2009079_V04.txt
# 5-28-2008 @ 16:45.26
# 6 TARGET REQUEST SLEW EVENTS GENERATED
#
2009-077-04:54:43, +1.00, 96
2009-077-08:29:14, -6.00, 124
2009-077-13:53:10, +10.00, 147
2009-078-05:27:13, -20.00, 204
2009-078-07:21:18, -20.00, 204
2009-078-08:41:17, -16.67, 185
```

Mini-RF Specific Target Request Sample

MINI_TARGETS_2009077_2009079_V00.txt
03-19-2009 @ 15:15.00
1 TARGET REQUEST SLEW EVENT GENERATED
#
2009-078-15:15:00, +9.80, 600

Figure B.3-2 Sample Target Requests File

B-29

B.1.29 (DLRE-2) DLRE FSW Load Samples

The following DLRE sample is specific for a scan table load.

Figure B.3-3 Sample DLRE Scan Table Load File

B-30

The following DLRE sample is specific for a FSW load.

/project/diviner_work/fel/Tables/MR4/DLRE_MR4_ramping_patch_2010084_V1.ld

unknown,ignored,107-107-9:5:49,1,ignored,00E6,NOSWAP, ,3
/NOSELECT

/dlinstupload dstbank=XRAM, address=0xd634

/NOCOMMIT

Х	c0e0	c0f0	c083	c082	c0d0	75d0	00c0	00c0
Х	01c0	02c0	03c0	04c0	05c0	06c0	0790	c620
Х	7431	f0c2	8eaf	598f	0a8f	098f	08e5	5f14
Х	601c	1470	0302	d798	1470	0302	d893	1470
Х	0302	dc2e	2404	6003	02dc	6f75	5f01	907f
Х	09e4	f0a3	£090	a47c	e0b4	020e	755b	0075
Х	5c14	755d	1c75	5eb2	8010	90a4	61e0	f55b
Х	a3e0	f55c	755d	0075	5e00	90a4	79e0	603f
Х	7552	0175	53a4	7554	6375	57c6	7558	30c3
Х	90d6	31e0	955c	90d6	30e0	955b	505e	e0fc
Х	a3e0	fdc3	90a4	62e0	9dff	90a4	61e0	9cfe
Х	ef25	e0f5	5eee	33£5	5d8c	5b8d	5c80	3d75
Х	5201	7553	a475	546c	7557	ce75	5830	c390
Х	d633	e095	5c90	d632	e095	5b50	1fe0	fca3
Х	e0fd	c390	a462	e09d	ff90	a461	e09c	feef
Х	25e0	f55e	ee33	f55d	8c5b	8d5c	8558	8285
Х	5783	e0fe	a3e0	24ff	f551	ee34	fff5	50aa
Х	57a9	587b	0190	0002	1232	c1f5	5990	0003
Х	1232	c1f5	5aab	52aa	53a9	5490	0005	1232
Х	c1ff	90a4	79e0	6004	7e04	8002	7e00	ee4f
Х	4408	907f	01f0	755f	0275	4d00	9000	0212
Х	3404	£582	85f0	83e4	f075	8dfd	758b	54d2
Х	8e02	dc71	e54d	c395	5950	2574	0425	4df5
Х	4dab	52aa	53a9	5490	0002	1234	04f5	8285
Х	f083	e54d	f075	8dfd	758b	54d2	8e02	dc71

Figure B.3-4 Sample DLRE FSW Load File

B.1.30 (LAMP-3) LAMP Instrument FSW Load Sample

Figure B.3-5 Sample LAMP Instrument FSW Load File

B-32

B.1.31 (LOLA-2) LOLA Improved Lunar Gravity Model Sample

```
GRAVITY FIELD 1p150g
PLANET1 301150150 0.49028010761000E+14 .173800000E+07
GCOEFC1 2 0 -0.909010949481D-04
GCOEFC1 3 0 -0.320307167959D-05
GCOEFC1 4 0 0.321409545028D-05
GCOEFC1 5 0 -0.221009876393D-06
GCOEFC1 6 0 0.376479064475D-05
GCOEFC1 7 0 0.561330656403D-05
GCOEFC1 8 0 0.231953905520D-05
GCOEFC1 9 0 -0.354241582136D-05
GCOEFC1 10 0 -0.933036285877D-06
GCOEFC1 11 0 -0.960353139804D-06
GCOEFC1 12 0 -0.188692162540D-05
GCOEFC1 13 0 0.258650494877D-06
. . .
GCOEFC1 2 1 -0.186273608184D-08
GCOEFC1 3 1 0.263418358622D-04
GCOEFC1 4 1 -0.600061939740D-05
GCOEFC1 5 1 -0.103560812630D-05
GCOEFC1 6 1 0.153429993945D-05
GCOEFC1 7 1 0.753347997634D-05
GCOEFC1 8 1 -0.398659493146D-07
GCOEFC1 9 1 0.200756653373D-05
GCOEFC1 10 1 0.814236506144D-06
GCOEFS1 2 1 -0.142453894610D-08
GCOEFS1 3 1 0.546307860882D-05
GCOEFS1 4 1 0.165955644727D-05
GCOEFS1 5 1 -0.411585726681D-05
GCOEFS1 6 1 -0.257237276906D-05
GCOEFS1 7 1 -0.131539563288D-06
GCOEFS1 8 1 0.111757157884D-05
GCOEFS1 9 1 0.917275746511D-07
GCOEFS1 10 1 -0.989134259432D-06
```

Figure B.3-6 Sample LOLA Improved Lunar Gravity Model

B-33

B.1.32 (LOLA-3) LOLA Instrument FSW Load Sample

<File Name>

<Mission>,<ID>,<Date>,<Version>,<Source>,<Pkt Size>,<Byte Swap>,<Data Size>,<Rate>

<Select Command>

<Instrument Load Command>

<Commit Command>

;

;

X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A

Figure B.3-7 Sample LOLA Instrument FSW Load File

B.1.33 (LOLA-6) LOLA Processed Laser Ranging Data Sample

H2 H3 H4 C0 C1 C3 C4	1 2008 6 8 0 5 0 532.2 1ro s12 st	01 4 0 59 0 0 2008 2 sx1 32.20 28 ium HTSI-ET		00.0 11.0 0		0	
40 40 20	3000.000000000000 3000.00000000000 3000.00000000	5 lola -1 1010.10 29	-1 -1 93.15 50.0	500.0 0.0	0.0 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0
11 11 11 11 11 11 11 11 11 11 11	3000.00000000000000 3001.000000000000 3002.000000000000 3005.00000000000 3005.0000000000	3002.23 3003.23 3004.23 3006.23 3006.23 3007.23 3008.23 3009.23 3010.23 3011.23 3012.23	33857750893 33856946230 33856171370 33855366707 33854591846 33853012323 33852207661 33851432800 33850628138 33849853277 33849853277	lro 5 lro 5	1 28 1 28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 11	3012.000000000000 3013.000000000000		33848273754 33847469091				0 0.0 100.0 0 0 0.0 100.0 0
11 11 11 11 11 20	3118.00000000000 3119.00000000000 3120.00000000000 3121.00000000000 3122.00000000000 3123.00000000000	3120.23 3121.23 3122.23 3123.23	33765095472 33764320612 33763545752 33762741089 33761966228 93.44 50.0	lro 5 lro 5 lro 5 lro 5	1 28 1 28 1 28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 0 & 0.0 & 100.0 & 0 \\ 0 & 0.0 & 100.0 & 0 \\ 0 & 0.0 & 100.0 & 0 \\ 0 & 0.0 & 100.0 & 0 \\ 0 & 0.0 & 100.0 & 0 \\ \end{array}$
11 11 11 11 11 11	3123.00000000000 3124.0000000000 3125.0000000000 3126.00000000000 3127.00000000000 3128.00000000000	3124.23 3125.23 3126.23 3127.23 3127.23 3128.23	33761191368 33760416508 33759641647 33758866787 33758091927 33757317066	lro 5 lro 5 lro 5 lro 5 lro 5	1 28 1 28 1 28 1 28 1 28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 11 11 11 11 11 11 11 11 20	$\begin{array}{c} 3359. \ 00000000000\\ 3360. \ 0000000000\\ 3361. \ 00000000000\\ 3362. \ 00000000000\\ 3363. \ 00000000000\\ 3364. \ 00000000000\\ 3364. \ 00000000000\\ 3365. \ 00000000000\\ 3366. \ 00000000000\\ 3368. \ 00000000000\\ 3369. \ 00000000000\\ 3369. \ 00000000000\\ 0000000000\\ 0000000000\\ 000000$	3361.23 3362.23 3363.23 3364.23 3365.23 3366.23 3367.23 3367.23 3368.23 3369.23	33587533236 33586847782 33586162329 33585476875 335847571 335845771 33582764864 33582079411 33581423759 94.03 50.0	lro 5 lro 5 lro 5 lro 5 lro 5 lro 5 lro 5 lro 5 lro 5 lro 5	1 28 1 28 1 28 1 28 1 28 1 28 1 28 1 28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 11 11 11 11 11	3369.000000000000 3370.00000000000 3371.00000000000 3372.00000000000 3373.00000000000 3374.000000000000	3370.23 3371.23 3372.23 3373.23 3374.23	33580738306 33580738306 33580052853 33579397202 33578711748 33578026295 33577370644	lro 5 lro 5 lro 5 lro 5 lro 5	1 28 1 28 1 28 1 28 1 28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccc} 0 & 0.0 & 100.0 & 0 \\ 0 & 0.0 & 100.0 & 0 \\ 0 & 0.0 & 100.0 & 0 \\ 0 & 0.0 & 100.0 & 0 \\ 0 & 0.0 & 100.0 & 0 \\ 0 & 0.0 & 100.0 & 0 \end{array}$

Н8

...

Н9

Figure B.3-8 Sample LOLA Processed Laser Ranging Data File

B-35

B.1.34 (LOLA-7) Lunar Laser Retro-Reflector Avoidance Event File Sample

```
# Lunar Retro Reflector Avoidance data
# Retro-reflectors : ALL
# White Sands : no constraint on visibility
# Generated 2009-02-02 15:20:32
# START = 2009-07-08T00:00:01.00 , 2009-189-00:00:01 , 300283266.18
# STOP = 2009-08-05T00:00:01.00 , 2009-217-00:00:01 , 302702466.18
# Event Start Duration
2009-191-15:54:12, 59
2009-191-17:47:12, 84
2009-191-19:40:11, 92
2009-191-21:33:10, 90
2009-191-23:26:10, 76
2009-192-01:19:10, 39
2009-192-04:58:01, 63
2009-192-06:51:05, 82
2009-192-08:44:09, 84
2009-192-10:37:12, 72
2009-192-12:30:15, 31
2009-193-15:01:01, 36
2009-193-16:54:03, 82
2009-193-18:47:06, 96
2009-193-20:40:09, 93
```

Figure B.3-9 Sample Lunar Laser Retro-Reflector Avoidance Event File

B-36

B.1.35 (LR-1) Laser Ranging Schedule Data Sample

Figure B.3-10 Sample Laser Ranging Schedule Data File

B-37

B.1.36 (LROC-3) LROC Daily Command Sequence Sample

Absolute Time, Image Priority, Command Mnemonic

2009-015-00:23:34, 1, LRNAC, XID=0xAC, TIME=2009-015-00:23:35.33, IMAGEID=0x1214, EXTIME=0xDEAF, LINES=0xEFFD, CPNDSEL=0xAB, TESTPAT=TEST, SUM=NO SUM, COMPENO COMPRESS, NACSEL=BOTH, RSTLVLL=0, RSTLVLL=0, OFFAL=0, OFFAL=0, OFFBL=0, OFFB 2009-015-00:23:34, 3, LRWAC, XID=0xA2, TIME=2009-015-00:23:35 33, IMAGEID=0xAC01, EXTIME=25009, FRMS=32000, CPNDSEL=0, TESTPAT=NO_TEST, WACPWR=ON, POLAR, COMP=COMPRESS, BAND=ALL_BANDS, IFRMTIME=205 2009-015-00:24:30, 2, LRNAC, XID=0xAAAAA, TIME=2009-015-00:24:32:00, IMAGEID=0x1215, EXTIME=0xDEAF, LINES=0xEFFD, CPNDSEL=0xAB, TESTPAT=TEST, SUM=NO SUM, COMP=COMPRESS, NACSEL=BOTH, RSTLVLL=1, RSTLVLL=1, OFFAL=1, OFFAL=1, OFFAL=0, OFFBL=0, OFFBL= 2009-015-00:26.45, 2, LRNAC, XID=0xA2, TIME=2009-015-00:26.47, 23, IMAGEID=0x1216, EXTIME=0xDEAF, LINES=0xEFFC, CPNDSEL=0xAA, TESTPAT=NO_TEST, SUM=NO_SUM, COMP=COMPRESS, NACSEL=BOTH, RSTLVLL=0, RSTLVLL=0, OFFAL=0, OFFAL=0, OFFBE=0, OFFBE 2009-015-00:28.55, 1, LRNAC, XID=0xA2, TIME=2009-015-00:28.57.53, IMAGEID=0x1217, EXTIME=0xDEAF, LINES=0xEF00, CPNDSEL=0xAA, TESTPAT=NO_TEST, SUM=NO_SUM, COMP=COMPRESS, NACSEL=BOTH, RSTLVLL=0, OFFAL=0, OFFAL=0, OFFAL=0, OFFBL=1, OFFBR=1 2009-015-00:32:30, 1, LRNAC, XID=0xAAAA, TIME=2009-015-00:32:32:43, IMAGEID=0x1218, EXTIME=0, LINES=0xEDDD, CPNDSEL=0xAB, TESTPAT=NO_TEST, SUM=SUM, COMPECOMPRESS, NACSEL=BOTH, RSTLVLL=0, RSTLVLL=0, OFFAL=0, OFFAL=0, OFFBL=0, OFF 2009-015-00:35:22, 4, LRNAC, XID=0xAAAA, TIME=2009-015-00:35:24 23, IMAGEID=0x1219, EXTIME=0, LINES=0xECAA, CPNDSEL=0xAB, TESTPAT=NO TEST, SUM=SUM, COMPECOMPRESS, NACSEL=BOTH, RSTLVLL=0, RSTLVLL=0, OFFAL=0, OFF 2009-015-00:40:12, 4, LRNAC, XID=0xAAAAA, TIME=2009-015-00:40:14.13, IMAGEID=0x121A, EXTIME=0xDEAF, LINES=0xECAD, CPNDSEL=0xAAA, TESTPAT=NO_TEST, SUM=NO_SUM, COMPRESS, NACSEL=NACR, RSTLVLL=0, RSTLVLL=0, OFFAL=0, OFFAL=0, OFFBL=0, OFFBL 2009-015-00:40:18, 1, LRNAC, XID=0xAAAAA, TIME=2009-015-00:40:20:03, IMAGEID=0x121B, EXTIME=0xDEAF, LINES=0xEFFA, CPNDSEL=0xAB, TESTPAT=NO_TEST, SUM=NO_SUM, COMP=COMPRESS, NACSEL=NACL, RSTLVLL=0, OFFAL=0, OFFAL=0, OFFAL=0, OFFBR=0 2009-015-00:43:28, 4, LRWAC, XID=0xAAAA, TIME=2009-015-00:43:30.25, IMAGEID=0xAC02, EXTIME=65000, FRMS=32000, CPNDSEL=0, TESTPAT=NO_TEST, WACPWR=ON, POLAR, COMP=COMPRESS, BAND=ALL_BANDS, IFRMTIME=180 2009-015-00:45:00, 1, LRNAC, XID=0xAC, TIME=2009-015-00:45:03:43, IMAGEID=0x121C, EXTIME=0xDEAF, LINES=0xEFFD, CPNDSEL=0xAB, TESTPAT=NO_TEST, SUM=NO_SUM, COMP=COMPRESS, NACSEL=BOTH, RSTLVLL=0, OFFAL=0, 2009-015-00:50.45, 1, LRNAC, XID=0xAC, TIME=2009-015-00:50.48.53, IMAGEID=0x121D, EXTIME=0xDEAF, LINES=0xEFFD, CPNDSEL=0xAB, TESTPAT=NO_TEST, SUM=NO_SUM, COMP=COMPRESS, NACSEL=BOTH, RSTLVLL=0, RSTLVLR=0, OFFAL=0, OFFAL= 2009-015-00:55-48, 2, LRNAC, XID=0xAAAAA, TIME=2009-015-00:55-52.13, IMAGEID=0x121E, EXTIME=0xDEAF, LINES=0xEFFD, CPNDSEL=0xAB, TESTPAT=NO_TEST, SUM=NO_SUM, COMP=COMPRESS, NACSEL=BOTH, RSTLVLL=0, OFFAL=0, OFFAL 2009-015-00:57-50, 2, LRNAC, XID=0xAAAA, TIME=2009-015-00:57-55.03, IMAGEID=0x121F, EXTIME=0xDEAF, LINES=0xEFFD, CPNDSEL=0xAB, TESTPAT=NO_TEST, SUM=NO_SUM, COMP=COMPRESS, NACSEL=BOTH, RSTLVLL=0, OSTAL=0, OFFAL=0, OFFAL 2009-015-01-00.05, 1, LRNAC, XID=0xAAAA, TIME=2009-015-01-00.07 43, IMAGEID=0x1220, EXTIME=0xABBB, LINES=0xEFFD, CPNDSEL=0xAA, TESTPAT=NO_TEST, SUM=NO_SUM, COMPENO_COMPRESS, NACSEL=BOTH, RSTLVLL=0, RSTLVLR=0, OFFAL=0, OFFAL=0, OFFBL=0, O 2009-015-01-05-15, 5, LRNAC, XID=0xAAAA, TIME=2009-015-01-05:18 43, IMAGEID=0x1221, EXTIME=0xDEAF, LINES=1, CPNDSEL=0xAB, TESTPAT=NO TEST, SUM=NO SUM, COMP=COMPRESS, NACSEL=BOTH, RSTLVLL=0, RSTLVLL=0, OFFAL=0, OFFAL=0, OFFBL=0, 2009-015-01-08:11, 5, LRNAC, XID=0xAAAA, TIME=2009-015-01-08:14 33, IMAGEID=0x1222, EXTIME=0xDEAF, LINES=1, CPNDSEL=0xAB, TESTPAT=NO_TEST, SUM=NO_SUM, COMP=COMPRESS, NACSEL=BOTH, RSTLVLL=0, RSTLVLL=0, OFFAL=0, OFFAL=0, OFFBL=0, 2009-015-01:10:15, 1, LRWAC, XID=0xAAAA, TIME=2009-015-01:11:00.11, IMAGEID=0xAC03, EXTIME=15800, FRMS=65000, CPNDSEL=0, TESTPAT=NO_TEST, WACPWR=ON, POLAR-NO_POLAR, COMPECS, BAND=UVI, IFRMTIME=205 2009-015-01:10:59, 1, LRNAC, XID=0xAAAA, TIME=2009-015-01:11:02.23, IMAGEID=0x1223, EXTIME=0xDAAC, LINES=0xEFFD, CPNDSEL=0xAB, TESTPAT=NO_TEST, SUM=NO_SUM, COMP=COMPRESS, NACSEL=BOTH, RSTLVLL=0, RSTLVLR=0, OFFAL=0, OFFAL=0, OFFBL=0, OFFB

Figure B.3-11 LROC Daily Command Sequence File

B-38

B.1.37 (MIRF-2) Mini-RF Load Files

<File Name>

<Mission>,<ID>,<Date>,<Version>,<Source>,<Pkt Size>,<Byte Swap>,<Data Size>,<Rate>

<Select Command>

<Instrument Load Command>

<Commit Command>

- ,
- .

X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A X 00 04 02 03 0A 99 6F 7A 30 FF CA 00 05 12 15 42 60 19 01 9A 9D 4A

Figure B.3-12 Sample Mini-RF Load File

B.1.38 (MIRF-3) Mini-RF Command Timeline Files

Absolute Time, Command Mnemonic

2009-115-14:20:00, MRACTIVATE, BOARD=ALL

2009-115-14:21:10, MRNOOP

2009-115-14:21:15, MRCOLLECT, DURATION=0.5, BAND=S, OPTION=CAL_NOISE, APID=0x8C, INDEX=20, OPI=OPI, VCHAN_ATT=0, HCHAN_ATT=10, BURSTS=1, EXP_ID=3, RPF_FACT=2, PTP_INT=1, PTP_FACT=1, COMPRS=2 2009-115-14:21:16, MRCOLLECT, DURATION=0.5, BAND=S, OPTION=CAL_CHIRP, APID=140, INDEX=25, OPI=OPI, VCHAN_ATT=25, HCHAN_ATT=20, BURSTS=1, EXP_ID=3, RPF_FACT=2, PTP_INT=1, PTP_FACT=1, COMPRS=2 2009-115-14:21:17, MRCOLLECT, DURATION=0.5, BAND=S, OPTION=TX_ONLY, APID=140, INDEX=25, OPI=OPI, VCHAN_ATT=25, HCHAN_ATT=20, BURSTS=1, EXP_ID=3, RPF_FACT=2, PTP_INT=1, PTP_FACT=1, COMPRS=2 2009-115-14:21:18, MRCOLLECT, DURATION=0.5, BAND=S, OPTION=BIT_TX_LEAK, APID=140, INDEX=25, OPI=OPI, VCHAN_ATT=25, HCHAN_ATT=20, BURSTS=1, EXP_ID=3, RPF_FACT=2, PTP_INT=1, PTP_FACT=1, COMPRS=2 2009-115-14:21:19, MRCOLLECT, DURATION=0.5, BAND=S, OPTION=BIT_TX_LEAK, APID=140, INDEX=25, OPI=OPI, VCHAN_ATT=25, HCHAN_ATT=20, BURSTS=1, EXP_ID=3, RPF_FACT=2, PTP_INT=1, PTP_FACT=1, COMPRS=2 2009-115-14:21:19, MRCOLLECT, DURATION=0.40, BAND=S, OPTION=BIT_TX_LEAK, APID=140, INDEX=25, OPI=OPI, VCHAN_ATT=25, HCHAN_ATT=20, BURSTS=1, EXP_ID=3, RPF_FACT=2, PTP_INT=1, PTP_FACT=1, COMPRS=2 2009-115-14:21:19, MRCOLLECT, DURATION=240, BAND=S, OPTION=NORMAL, APID=0x8C, INDEX=20, OPI=OPI, VCHAN_ATT=25, HCHAN_ATT=10, BURSTS=2000, EXP_ID=3, RPF_FACT=2, PTP_INT=1, PTP_FACT=1, COMPRS=0x0C 2009-115-14:21:19, MRNOOP

2009-115-14:27:00, MRDEACTIVATE

Figure B.3-13 Sample Mini-RF Command Timeline File

B-40

Mission Operations Center Products

B.1.39 (MOC-7) Daily Command Load Report Sample

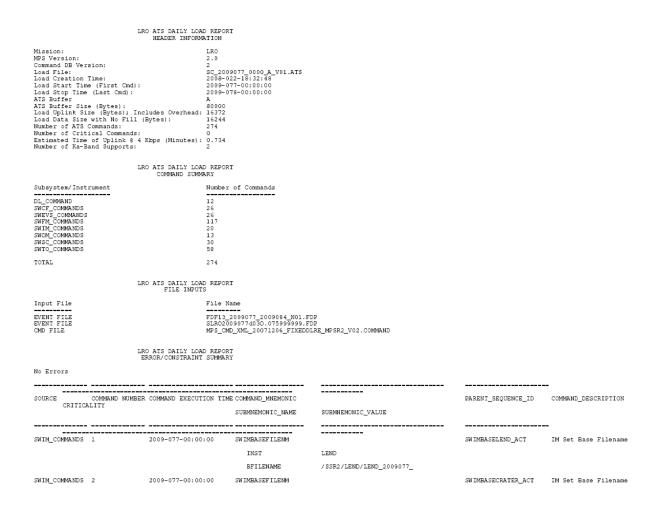


Figure B.4-1 Sample Daily Command Load Report File

B.1.40 (MOC-62) RTS Command Load Report Sample

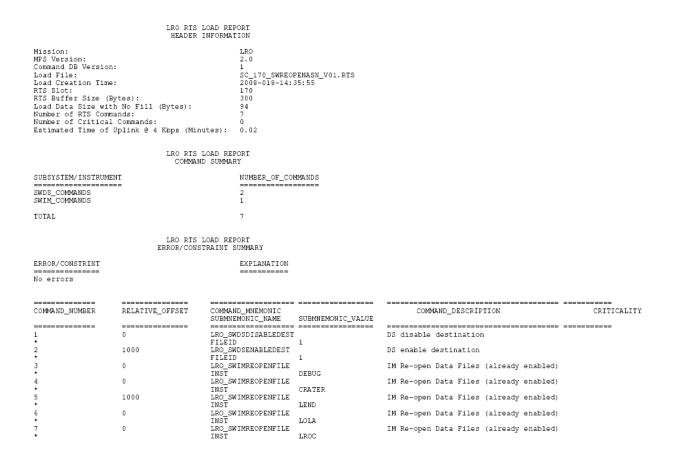


Figure B.4-2 Sample RTS Command Load Report File

B-42

B.1.41 (MOC-2) SCLK SPICE Clock Correlation File Sample

KPL/SCLK

LRO SCLK File This file is a SPICE spacecraft clock (SCLK) kernel containing information required for converting LRO spacecraft on-board clock times to other time systems (UTC, ET, etc) and vice versa. Production/History of this SCLK file _____ This file was generated by the NAIF utility program MAKCLK from the LRO SCLKvSCET file /export/home/whcalk/Desktop/clock_corr_data/LRO_SCLKvSCET (see the comment sections `SCLKvSCET file SFDU Header'' and ``MAKCLK Setup file'' below for the SCLKvSCET SFDU header and MAKCLK setup file) Usage _____ This file must be loaded into the user's SPICE-based application by a call to the SPICELIB FURNSH subroutine (furnsh_c in CSPICE, cspice_furnsh in ICY): CALL FURNSH ('frame_kernel_name') furnsh_c ("frame_kernel_name"); cspice_furnsh, "frame_kernel_name" in order to use the SPICELIB SCLK family of subroutines to convert LRO spacecraft on-board clock to ET and vice versa. SCLK Format The on-board clock, the conversion for which is provided by this SCLK file, consists of two fields: SSSSSSSSS:FFFFF where: SSSSSSSSS -- count of on-board seconds FFFFF -- count of fractions of a second with one fraction being 1/65536 of a second References _____ 1. SCLK Required Reading Document 2. MAKCLK User's Guide Document з. SFOC SCLKvSCET SIS Document Inquiries _____ If you have any questions regarding this file contact Howard Calk, LRO Engineering (William.H.Calk@nasa.gov; 301-286-4843) SCLKvSCET file SFDU Header MISSION-NAME=LRO; MISSION-NAMELENC; SPACECRAFT-NAMELENC; DATA-SET-ID=SCLK-SCET; FILE-NAME=lro_clkcor2009037_v00.tsc; FRODUCT-CREATION-TIME=2008-04-16T17:43:36; PRODUCT-VERSION-ID=02; DROPUCED ID_cCE PRODUCER-ID=SCT; APPLICABLE-START-TIME=1980-001T00:00:00;

Figure B.4-3 Sample SCLK SPICE Clock Correlation File (page 1 of 2)

B-43

```
MISSION-NAME=LRO;
       SPACECRAFT-NAME=LRO;
       DATA-SET-ID=SCLK-SCET;
       FILE-NAME=LRO-SCLKSCET-EXAMPLE.00018;
       PRODUCT-CREATION-TIME=2008-05-01T17:45:50;
       PRODUCT-VERSION-ID=18;
       PRODUCER-ID=SCT;
       APPLICABLE-START-TIME=1980-001T00:00:00;
       APPLICABLE-STOP-TIME=2010-001T00:00:00;
       MISSION-ID=UNK;
       SPACECRAFT-ID=85;
MAKCLK Setup file
                     SCLKSCET_FILE= /export/groups/ops/current/naif/sclk/input/LRO_SCLKvSCETOLD_SCLK_KERNEL= /export/groups/naif/current/lro_template.tscFILE_NAME= /export/groups/naif/current/sclk/lro_clkcor_2008179_v00.tscNAIF_SPACECRAFT_ID= -85LEAPSECONDS_FILE= /export/groups/naif/data/lsk/naif0008.tlsPARTITION_TOLERANCE= 656LOG_FILE= /export/groups/ops/current/naif/sclk/input/LRO_SCLKvSCET.log
Kernel DATA
    _____
\begindata
                                = ( 02008-06-27/20:37:49.00 )
SCLK KERNEL ID

      SCLK_DATA_TYPE_85
      = (1)

      SCLK01_TIME_SYSTEM_85
      = (2)

      SCLK01_N_FIELDS_85
      = (2)

      SCLK01_MODULI_85
      = (4294967296 65536)

      SCLK01_OFFSETS_85
      = (00)

SCLK01_OFFSETS_85 = (00)
SCLK01_OUTPUT_DELIM_85 = (1)
SCLK_PARTITION_END_85 = ( 2.8147497671065E+14 )
SCLK01_COEFFICIENTS_85 = (
```

\begintext

Figure B.4-4 Sample SCLK SPICE Clock Correlation File (page 2 of 2)

B-44

B.1.42 (MOC-40) SPICE FK – Frame Kernel Sample

The following several examples provide more details into the LRO Frames kernel. The actual file is larger than can be adequately provided here. If the reader wishes to see the complete Frames kennel sample please contact the author

KPL/FK

LRO Frame Definitions Kernel -- DRAFT

This frame kernel contains the LRO spacecraft and science instrument frame definitions. This frame kernel also contains name - to - NAIF ID mappings for LRO science instruments and s/c structures (see the last section of the file.)

Version and Date

Version 0.2 draft -- May 06, 2008 -- Ralph Casasanta, Boris Semenov

Modified HGA and SA IDs for the CK identifier to indicate we use the main object structure and not to the articulating booms. NOTE: Still does not contain a description for any of the frames.

Version 0.1 draft -- November 14, 2007 -- Boris Semenov

Added HGA and SA definitions and changed their IDs and relationship. Fixed frame ID that is a part of the keyword name in numerous fixed offset frames. Added name-ID mapping keywords. Minor revisions to the comments. Still does not contain a description for any of the frames.

Version 0.0 draft -- November 14, 2007 -- Eric B. Holmes

Initial Release. Contains Euler angles from LRO I-Kernel files. Does not contain a description for any of the frames.

B-45

LRO Ext. Sys. ICD for (LRGS)

LRO Frames

The following LRO frames are defined in this kernel file:

Frame Name	Relative to	Type ======	NAIF ID
Spacecraft Bus and Spacecraft	Structure Frames:		
LRO_SC_BUS	rel.to J2000	CK	-85000
LRO_HGA	rel.to SC_BUS	CK	-85020
LRO_SA	rel.to SC_BUS	CK	-85030
LRO_STARP LRO_STARS	rel.to SC_BUS rel.to SC_BUS	FIXED FIXED	-85010 -85011
LRO_MIMU	rel.to SC_BUS	FIXED	-85012
Instrument Frames:			
LRO_CRATER	rel.to SC_BUS	FIXED	-85100
LRO_DLRE	rel.to SC_BUS	FIXED	-85200
LRO_LAMP	rel.to SC_BUS	FIXED	-85300
LRO_LEND	rel.to SC_BUS	FIXED	-85400
LRO_LOLA	rel.to SC_BUS	FIXED	-85500
-	rel.to SC_BUS rel.to SC_BUS rel.to SC_BUS	FIXED FIXED FIXED	-85600 -85610 -85620
LRO_MINIRF	rel.to SC_BUS	FIXED	-85700

B-46

 FRAME_LRO_DLRE
 = -85200

 FRAME_-85200_NAME
 = 'LRO_DLRE'

 FRAME_-85200_CLASS
 = 4

 FRAME_-85200_CLASS_ID
 = -85200

 FRAME_-85200_CENTER
 = -85

 TKFRAME_-85200_SPEC
 = 'ANGLES'

 TKFRAME_-85200_RELATIVE
 = 'LRO_SC_BUS'

 TKFRAME_-85200_ANGLES
 = (0.0, 0.0, 0.0)

 TKFRAME_-85200_AXES
 = (1, 2, 3)

 TKFRAME_-85200_UNITS
 = 'DEGREES'

\begintext

Figure B.4-5 Sample SPICE FK – Frame Kernel

B-47

B.1.43 (MOC-41- MOC-44) SPICE CK File Comments Sample

LRO Predicted Spacecraft Orientation CK File

.

Orientation Data in the File

This file contains actual orientation data for the Lunar Reconnaissance Orbiter (LRO) spacecraft frame, 'LRO_SPACECRAFT', relative to the Earth Mean Equator and Equinox of date, 'J2000', frame. The NAIF ID code for the 'LRO_SPACECRAFT' frame is -85000.

Status

This file is a regular operational actual C-Kernel file created by the LRO AGS. It contains quaternions extracted from the telemtry downlinked from the spacecraft by the LRO MOC.

Pedigree

This CK file was generated by an automated process. This process extracts spacecraft orientation quaternions from the telemetry using the LRO MTASS and writes them to a CK file using MSOPCK program.

Approximate Time Coverage

This file is a type 3 CK file (segment) which provides linear interpolation between orientation data points extracted from telemetry. Sunch interpolation is not applied to the whole coverage of a segment but only inside intervals where enough orientation telemetry data were available and orientation data points were close to each other in time for such interpolation to make sense.

A table containing the complete list of valid interpolation intervals in each segment of the file is provided at the end of these comments.

The start time and stop time of the total coverage for every segment in the file are given in the header of the interval table for that segment.

Usage Note

In order to use this file an LRO SCLK file, containing coefficients mapping LRO on-board time to ET, and the standard LSK file, providing UTC to ET mapping, must be loaded into a user program.

Contacts

If you have any question regarding this data contact the LRO MOC:

Richard Saylor 301-286-1354 richard.s.saylor@nasa.gov

\begindata

Figure B.4-6 Sample SPICE CK File Comments (Page 1 of 2)

B-48

LSK_FILE_NAME = 'D:\LRO_FDS\Data\SupportFiles\naif0009.tls.pc' SCLK_FILE_NAME = 'D:\LRO_FDS\Data\SupportFiles\lro_clkcor2008300_v00.tsc' INTERNAL_FILE_NAME = 'LRO BODY ATTITUDE - DEFINITIVE FROM AGS' CK_TYPE = 3 CK_SEGMENT_ID = 'LRO BODY ATTITUDE - SEGMENT SIM 29' INSTRUMENT_ID = -85000 REFERENCE_FRAME_NAME = 'J2000' ANGULAR_RATE_PRESENT = 'MAKE UP/NO AVERAGING' MAXIMUM_VALID_INTERVAL = 65 INPUT_TIME_TYPE = 'UTC' INPUT_DATA_TYPE = 'MSOP QUATERNIONS' QUATERNION_NORM_ERROR = 0.00010 COMMENTS_FILE_NAME = 'D:\LRO_FDS\Data\SupportFiles\lro_comments_defin.txt' PRODUCER_ID = 'LRO AGS' \begintext

2009-09-24T05:53:27.214 2009-09-24T07:05:33.816 2009-09-24T12:00:00.085 2009-09-24T12:01:38.289 2009-09-24T13:29:00.183 2009-09-24T17:48:34.785

SEG.SUMMARY: ID -85000, COVERG: 2009-09-24T17:48:34.785 2009-09-24T22:06:06.984

2009-09-24T17:48:34.785 2009-09-24T22:06:06.984

Figure B.4-6 Sample SPICE CK File Comments (Page 2 of 2)

B-49

B.1.44 (MOC-30) Mini-RF Operations Opportunity Sample

ADD,2009-062-14:00:00,2009-062-14:30:00 DELETE,2009-063-14:00:00,2009-062-14:30:00 ADD,2009-063-14:15:00,2009-063-14:25:00 ADD,2009-064-14:00:00,2009-062-14:30:00

Figure B.4-7 Sample Mini- Operations Opportunity File

B-50

B.1.45 (MOC-46 thru MOC-60) Meta-Summary Report Sample

The Meta-Summary Report is valid for the set of science instrument housekeeping and measurement data products that the WS1-SDPS element delivers to the MOC and that the MOC then distributes to the various science centers. The following sets of figures provide the various representation of the Meta Summary Reports.

Transaction ID:: 0.24_1 Source file name:: /export/dyer/files/core Destination file name:: /export/dyer/dest/d_core Transaction started:: 2007-213-155409 Class:: 2 File size:: 4730 Temp file name:: /home/dyer/itos/rh/test/output/cfdp/tempfiles/temp00075 Transaction completed:: 2007-213-155410 CFDP File checksum:: 2431491781 MD5 File checksum:: bcbdf2dfb48fe5a858319bfabed7e170 File transfer status:: Successful File complete percentage:: 100.0000

Figure B.4-8 Sample Meta-Summary Report (No Gaps)

Transaction ID:: 0.23_1 Source file name:: /export/dyer/files/f550M Destination file name:: /export/dyer/dest/d_f550M Transaction started:: 2007-213-202627 Class:: 2 File size:: 576716800 Temp file name:: /home/dyer/itos/sunk/test/output/cfdp/tempfiles/temp00001 Transaction completed::2007-213-20:26:42 CFDP File checksum:: 2431491781 MD5 File checksum:: bcbdf2dfb48fe5a858319bfabed7e170 File transfer status:: Unsuccessful, cancel requested. File complete percentage:: 86.3637 Number of gaps in file:: 2 File completion map:: missing bytes = 1742, offset = 485849026 File completion map:: missing bytes = 78640848, offset = 496217410

Figure B.4-9 Sample Meta-Summary Report (Missing Data Segments)

B-51

Transaction ID:: 0.23 1 Source file name:: /export/dyer/files/f550M Destination file name:: /export/dyer/dest/d_f550M Transaction started:: 2007-213-202627 Class:: 2 File size:: 576716800 Temp file name:: /home/dyer/itos/sunk/test/output/cfdp/tempfiles/temp00001 Transaction completed:: 2007-213-202642 CFDP File checksum:: 2431491781 MD5 File checksum:: bcbdf2dfb48fe5a858319bfabed7e170 File transfer status:: Unsuccessful, cancel requested. File complete percentage:: 86.3637 Number of gaps in file:: 2 File completion map:: missing bytes = 1742, offset = 485849026File completion map:: missing bytes = 78640848, offset = 496217410 Processed File size:: 498074150 Processed File MD5 checksum:: bcbdf2dfb48fe5a858319bf3fae4f321 Processed complete percentage:: 86.3637 File deletion map:: deleted bytes = 1762, offset = 485849016 File deletion map:: deleted bytes = 78640888, offset = 496217370

Figure B.4-10 Sample Meta-Summary Report (Deleted Data Segments)

Transaction ID:: 0.24_1 Source file name:: /export/dyer/files/core Destination file name:: /export/dyer/dest/d_core Transaction started:: 2010-056-155409 Class:: 2 File size:: 4730 Temp file name:: /home/dyer/itos/rh/test/output/cfdp/tempfiles/temp00075 Transaction completed:: 2010-056-155412 CFDP File checksum:: 2431491781 MD5 File checksum:: bcbdf2dfb48fe5a858319bfabed7e170 File transfer status:: Successful File complete percentage:: 100.0000 File size no fill: 4600 MD5 File Checksum no fill:: bcbdf2dfb48fe5a858319bfabed7c200

Figure B.4-11 Sample LROC Science Meta-Summary Report (No Missing Data Segments)

B.1.46 (MOC-63) Propulsion System Data File Sample

ASCII Report Input Definition File: C:\itps\Data\IDF\MOC63_PROPDATA.idf Report Date: 04/07/2008 DMDB file(s): C:\itps\Data\dmdb\LRODB_033108.dmdb Decom start: 2008/303/10:15:00 Decom stop: 2008/303/13:00:00

Year S/C Time	CDHEPRESSTNKTEMP CDLP	RXDCR
2008 303-10:15:00.387	2290	-0.35021
2008 303-10:15:02.387	2290	-0.264795
2008 303-10:15:04.387	2291	-0.35021
2008 303-10:15:06.387	2290	-0.35021
2008 303-10:15:08.387	2290	-0.264795
2008 303-10:15:10.387	2289	-0.264795
2008 303-10:15:12.387	2290	-0.35021
2008 303-10:15:14.387	2291	-0.264795
2008 303-10:15:16.387	2290	-0.264795
2008 303-10:15:18.387	2290	-0.35021
2008 303-10:15:20.387	2291	-0.264795
2008 303-10:15:22.387	2291	-0.264795
2008 303-10:15:24.386	2290	-0.264795
2008 303-10:15:26.387	2289	-0.264795
2008 303-10:15:28.387	2291	-0.264795
2008 303-10:15:30.387	2290	-0.264795
2008 303-10:15:32.387	2290	-0.264795
2008 303-10:15:34.387	2290	-0.35021
2008 303-10:15:36.387	2290	-0.264795
2008 303-10:15:38.387	2290	-0.35021
2008 303-10:15:40.387	2290	-0.35021
2008 303-10:15:42.387	2291	-0.35021
2008 303-10:15:44.387	2291	-0.264795

Figure B.4-12 Sample Propulsion System Data File

B-54

B.1.47 (MOC-65) Definitive Spacecraft Body Frame Attitude File

```
С
      Spacecraft_Body_Attitude_File
С
      Satellite_ID LRO
      StartTime 2009 077
C
                                0.000
     StopTime 2009 078 0.000
С
C
      CoordinateFrame MJ2000
C YYYY DDD SSSSS.SSS Component_1(q1) Component_2(q2) Component_3(q3) Component_4(q4)
2009 077 0.000 0.14162258260076 0.69448852253506 0.14179631907482 0.69103005727782
2009 077 60.000 0.14550229481938 0.67503262855665 0.13780592750426 0.71004898347289
2009 077 120.000 0.14927210288513 0.65505225744127 0.13371031800777 0.72852311574830
2009 077 180.000 0.15293221511306 0.63456213491401 0.12951635025360 0.74643696956339
2009 077 240.000 0.15647792940289 0.61357816522457 0.12522528606863 0.76377687874042
2009 077 300.000 0.15990109124417 0.59211743819900 0.12083385318790 0.78053043523193
2009 077 360.000 0.16319771186450 0.57019682517940 0.11634367055144 0.79668452835495
2009 077 420.000 0.16636727219537 0.54783264998274 0.11176085648371 0.81222584871032
2009 077 480.000 0.16940846521380 0.52504174729127 0.10709061362663 0.82714178711289
2009 077 540.000 0.17231960896500 0.50184126994758 0.10233759036915 0.84142041200638
2009 077 600.000 0.17509869213434 0.47824887853210 0.09750595194378 0.85505031871298
2009 077 660.000 0.17774297493537 0.45428289551004 0.09259860074252 0.86802072835196
2009 077 720.000 0.18025027375009 0.42996174028738 0.08761917495865 0.88032131683927
2009 077 780.000 0.18261823824457 0.40530437548894 0.08257089004223 0.89194225731692
2009 077 840.000 0.18484546398546 0.38032964026980 0.07745872815774 0.90287411337818
2009 077 86340.000 0.01664355144104 -0.97649799529991 -0.19872492062869 0.08175000484285
2009 078
           0.000 0.01111257185095 -0.97839109106203 -0.19910965609696 0.05461436190471
```

Figure B.4-13 Sample Definitive Spacecraft Body Frame Attitude File

B-55

B.1.48 (MOC-66) Spacecraft HGA Motion File

C HG2	A_Motion_File			
C Sat	tellite_ID LRG)		
C Sta	artTime 2009 (0.000		
C Sto	opTime 2009 07	78 0.000		
C Coo	ordinateFrame	MJ2000		
C YYYY DI	DD SSSSS.SSS	X_Direction	Y_Direction Z_Dire	ction
2009 077	0.000	0.18915604	0.87204921	0.45138694
2009 077	60.000	0.18900540	0.87196680	0.45160920
2009 077	120.000	0.18884157	0.87188689	0.45183196
2009 077	180.000	0.18866461	0.87180981	0.45205455
2009 077	240.000	0.18847464	0.87173589	0.45227629
2009 077	300.000	0.18827180	0.87166544	0.45249650
2009 077	360.000	0.18805627	0.87159877	0.45271451
2009 077	420.000	0.18782828	0.87153615	0.45292966
2009 077	480.000	0.18758808	0.87147787	0.45314129
2009 077	540.000	0.18733598	0.87142420	0.45334875
2009 077	600.000	0.18707232	0.87137539	0.45355141
2009 077	660.000	0.18679747	0.87133166	0.45374866
2009 077	720.000	0.18651183	0.87129324	0.45393989
2009 077	780.000	0.18621585	0.87126034	0.45412451
2009 077	840.000	0.18590999	0.87123315	0.45430197
2009 077	86340.000	-0.02139602	0.89652109	0.44248407
2009 078	0.000	-0.02129603	0.89654289	0.44244471

Figure B.4-14 Sample Spacecraft HGA Motion File

B.1.49 (MOC-67) Spacecraft Solar Array Motion File

C Spa	cecraft_Solar	_Array_Motion	_File	
C Sat	ellite_ID LRC)		
C Sta	rtTime 2009 0	77 0.000		
C Sto	pTime 2009 07	0.000		
C Coo	rdinateFrame	MJ2000		
C YYYY DD	D SSSSS.SSS	X_Direction	Y_Direction Z_Dire	ction
2009 077	0.000	0.99908734	-0.03925970	-0.01682746
2009 077	60.000	0.99908786	-0.03924884	-0.01682205
2009 077	120.000	0.99908837	-0.03923799	-0.01681665
2009 077	180.000	0.99908889	-0.03922713	-0.01681125
2009 077	240.000	0.99908941	-0.03921628	-0.01680585
2009 077	300.000	0.99908993	-0.03920542	-0.01680046
2009 077	360.000	0.99909044	-0.03919456	-0.01679509
2009 077	420.000	0.99909096	-0.03918370	-0.01678972
2009 077	480.000	0.99909147	-0.03917283	-0.01678437
2009 077	540.000	0.99909199	-0.03916196	-0.01677903
2009 077	600.000	0.99909251	-0.03915108	-0.01677371
2009 077	660.000	0.99909302	-0.03914020	-0.01676840
2009 077	720.000	0.99909354	-0.03912931	-0.01676312
2009 077	780.000	0.99909405	-0.03911841	-0.01675786
2009 077	840.000	0.99909457	-0.03910750	-0.01675262
2009 077	86340.000	0.99967882	-0.02330287	-0.00996166
2009 078	0.000	0.99967912	-0.02329176	-0.00995698

Figure B.4-15 Sample Spacecraft Solar Array Motion File

B.1.50 (MOC-68) OBC Generated Attitude Data File

ASCII Report,	
2008; 303-10:15:22.167; 0.259437; 0.064727; -0.451025; 0.851516; 0.259333; 0.064755; -0.45106; 0.851527; 2; 1; -0.000203; -0.000066; -0.000076; 0.000044; 0.000044; 0.000029; 0.000066; 0.000227	
2008, 303-10:15:23.167, 0.259433, 0.064728, -0.451027, 0.851516, 0.259333, 0.064755, -0.45106, 0.851527, 2, 1, -0.000197, -0.000063, -0.000072, -0.000012, -0.000008, 0.0000017, 0.000219	
2008, 303-10:15:24.167, 0.259429, 0.064728, -0.451028, 0.851517, 0.259333, 0.064755, -0.45106, 0.851527, 2, 1, -0.000188, -0.000059, -0.000023, 0.000023, 0.000035, 0.000051, 0.00021	
2008, 303-10:15:25.166, 0.259403, 0.064726, -0.451042, 0.851517, 0.259333, 0.064755, -0.45106, 0.851527, 2, 1, -0.000147, -0.000025, -0.000046, -0.000038, -0.000031, -0.000023, 0.000054, 0.000156	
2008, 303-10:15:26.167, 0.259391, 0.064726, -0.451047, 0.851518, 0.259333, 0.064755, -0.45106, 0.851527, 2, 1, -0.000129, -0.000036, 0.000021, 0.000021, 0.000031, 0.000046, 0.000134	
2008, 303-10:15:27.164, 0.259366, 0.064724, -0.451064, 0.851517, 0.259333, 0.064755, -0.45106, 0.851527, 2, 1, -0.000091, 0.000024, -0.0000015, -0.000015, -0.000015, 0.000023, 0.000094	

Figure B.4-16 Sample OBC Generated Attitude Data File

B-58

B.1.51 (MOC-72) LRO Thruster Data File

ASCII Report

Input Definition File: C:\itps\Data\IDF\MOC72_THRUSTER.idf Report Date: 04/07/2008 DMDB file(s): C:\itps\Data\dmdb\LRODB_033108.dmdb Decom start: 2008/303/10:15:00 Decom stop: 2008/303/13:00:00

Year, S/C Time, SWACDHTIMEINMODE, SWACDVTIMEINMODE, SWACDHSYSANGMOMERRMAG, SWACDVSENTPULSEAT1, SWACDVSENTPULSEAT2, SWACDVSENTPULSEAT3, SWACDVSENTPULSEAT4, SWACDVSENTPULSEAT5, SWACDVSENTPULSEAT5, SWACDVSENTPULSEAT6, SWACDVSENTPULSEAT7, SWACDVSENTPULSEAT6, SWACDVSENTPULSEAT7, SWACDVSENTPULSEAT6, SWACDVSENTF0, SWACDVSENTF0 SWACDVSENTPULSENT4, SWACDVTHRONTIMEAT1, SWACDVTHRONTIMEAT2, SWACDVTHRONTIMEAT3, SWACDVTHRONTIMEAT4, SWACDVTHRONTIMEAT5, SWACDVTHRONTIMEAT6, SWACDVTHRONTIMEAT7, SWACDVTHRONTIMEAT8, SWACDVTHRONTIMENT1, SWACDVTHRONTIMENT2, SWACDVTHRONTIMENT3, SWACDVTHRONTIMENT4,

Figure B.4-17 Sample LRO Thruster Data File

B-59

B.1.52 (MOC-74) Predictive LRO Spacecraft Body Attitude File

MOC74_2008320_20083287_v01.a

stk.v.7.0

BEGIN Attitude

NumberofAttitudePoints 129601

24 Nov 2008 10:20:00.0 ScenarioEpoch CentralBody Earth CoordinateAxes J2000 AttitudeTimeQuaternions 0.000000 0.239141 0.098590 -0.224468 0.939524 $2.000000 \ 0.239125 \ 0.098579 \ -0.224470 \ 0.939529$ 4.000000 0.239109 0.098568 -0.224472 0.939534 6.000000 0.239093 0.098556 -0.224474 0.939538 8.000000 0.239077 0.098545 -0.224476 0.939543 10.000000 0.239061 0.098534 -0.224478 0.939548 12.000000 0.239045 0.098523 -0.224480 0.939553 14.000000 0.239029 0.098512 -0.224481 0.939558 16.000000 0.239013 0.098501 -0.224483 0.939562 18.000000 0.238997 0.098490 -0.224485 0.939567 20.000000 0.238981 0.098478 -0.224487 0.939572

. . . .

259196.000000 0.227984 0.046795 -0.208213 0.949990 259198.000000 0.227984 0.046795 -0.208213 0.949990 259200.000000 0.227984 0.046795 -0.208212 0.949990 END Attitude

Figure B.4-18 Sample Predictive LRO Spacecraft Body Attitude File

B-60

- B.1.53 (MOC-64) Laser Ranging Go-NOGO Flag Sample File
- LRO 0911401 0059 5 nogo maneuver

OR

LRO 0911401 0059 5 go

Figure B.4-19 Sample Laser Ranging Go-NOGO Flag File

MOC-69 product Best Estimated Launch Vehicle Separation Data# 25 April 2009, 1441 GMT

#

Date of launch vehicle separation = 04242009 (MMDDYYYY)

Time of launch vehicle separation = 123516 (HHMMSS)

Semi-major Axis = 123456.54321(Km)

Eccentricity = 0.2346(Unitless)

Inclination = 93.2345(Degrees)

Right Ascension of Ascending Node = 270.0345 (Degrees)

Argument of perigee = 123.8765 (Degrees)

True Anomaly = 88.2345 (Degrees)

Orbiter Separation Data (S/C Body Frame)

Separation Rate X Axis = 2.3456 (m/sec)

Separation Rate Y Axis = 0.09356 (m/sec)

Separation Rate Z Axis = 0.00009 (m/sec)

Sun Vector X Axis = 0.3435 (Unitless)

Sun Vector Y Axis = 0.889 (Unitless)

Sun Vector Z Axis = 0.302798 (Unitless)

Figure B.4-20 Sample LRO-Provided Separation Data File

B-62

B.1.55 (MOC-71) Data Recorder Model Report Sample File

MOC-71 Data Recorder Model

Instruments									
VR1: LROC/MIN VR2: CRaTER/I	NI-RF DLRE/LAMP/LEND/LG aft Houskeeping	OLA							
Capacity									
VR1: 390.32 (VR2: 14.00 (VR3: 8.00 (Sbits								
WOTIS Ka Band	1 Passes		MINUTES	RATE (Mbps)					
2009268.11154 2009268.13045 2009269.1459 2009269.12214 2009269.14131 2009269.16076 2009269.1758	00 - 2009267.194 18 - 2009268.115 53 - 2009268.135 56 - 2009268.134 16 - 2009269.130 14 - 2009269.145 10 - 2009269.145 10 - 2009269.183 NAC Image Size:	704 148 437 440 740 110 855 2.	3042 Gbit	s					
Average LROC Size of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363.	3926 Gbit 077.19570	s 5					
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL (Gbits)	LECC THACES AVALABLE	VE1 (390.32)	Available Mem	ory (Gbits)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL(Gbits)	LROC IMAGES AVALABLE	VR1 (390.32) 363.3926 (93%)	Available Mem 	Ory (Gbits)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL(Gbits)	LROC IMAGES AVALABLE 157 147	VR1(390.32) 363.3926 (93%) 339.9978 (87%)	Available Mem 	Ory (Gbits)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL(Gbits)	LROC IMAGES AVALABLE 	VB1(390.32) 	Available Mem 	OTY (Gbits) VR3(8.00)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL(Gbits) - - - - -	LROC IMAGES AVALABLE 157 147 137 130	VR1 (390. 32) 363.3926 (93%) 333.9978 (87%) 316.6029 (81%) 300.2266 (76%)	Available Mem VR2(14.00) - - - -	NOTY (Gbits) VR3(8.00) - - - - -
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL(Gbits) 	LROC IMAGES AVALABLE 157 147 137 130 139 199	VR1 (390. 32) 363. 3926 (93%) 339. 9978 (87%) 316. 6029 (81%) 300. 2266 (76%) 274. 4923 (70%) 255. 3560 (64%)	Available Mem <u>VR2(14.00)</u> - - - - - -	ory (Gbits)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL (Gbits) 	LROC IMAGES AVALABLE 157 147 137 130 119 109	VR1 (390.32) 363.3926 (93%) 339.9978 (87%) 316.6029 (81%) 300.2266 (76%) 274.4923 (70%) 253.4369 (64%) 232.3916 (59%)	Available Mem VR2(14.00) 	VR3(8.00)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL (Gbits) 	LROC IMAGES AVALABLE 157 147 137 130 119 109 100 90	VR1 (390. 32) 363. 3926 (934) 339.9978 (874) 316.6029 (814) 300.2266 (764) 274.4923 (704) 253.4369 (644) 232.3816 (594) 208.9867 (538)	Available Mem VR2(14.00) - - - - - - - - - - - - -	ory (Gbits) VR3(8.00) - - - - - - - - - - - - -
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL (Gbits) 	LROC IMAGES AVALABLE 157 147 130 119 109 109 100 90 81	VR1(390.32) 	Available Mem <u>VR2(14.00)</u> - - - - - - - - - - - - -	Ory (Gbits)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL(Gbits) - - - - - - - - - - - - - - - - - - -	LROC IMAGES AVALABLE 157 147 137 130 109 109 109 100 90 91 70	VR1(390.32) 363.3926 (93%) 339.9978 (87%) 316.6029 (81%) 300.2266 (76%) 274.4923 (70%) 253.4369 (64%) 208.9867 (53%) 208.9867 (53%) 187.9314 (48%) 162.1971 (41%)	Available Mem VR2(14.00) 	Ory (Gbits) VR3(8.00)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL (Gbits)	LROC IMAGES AVALABLE 157 147 137 139 109 109 100 90 61 70 65	VR1(390.32) 363.3926 (93%) 339.9978 (87%) 316.6029 (81%) 300.2266 (76%) 274.4923 (70%) 232.3816 (59%) 208.9867 (53%) 187.9314 (48%) 162.1971 (41%) 150.1128 (38%)	Available Mem VR2(14.00) - - - - - - - - - - - - -	Ory (Gbits)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL(Gbits) 	LROC IMAGES AVALABLE 157 147 137 130 119 109 109 109 100 90 81 70 65 99	VR1 (390. 32) 363. 3926 (93%) 333. 9978 (87%) 316.6029 (81%) 300.2266 (76%) 274.4923 (70%) 253.4369 (64%) 208.9867 (53%) 187.9314 (48%) 162.1971 (41%) 150.1128 (38%) 230.2051 (58%)	Available Mem VR2(14.00) 	Ory (Gbits)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL (Gbits) 	LROC IMAGES AVALABLE 157 147 137 130 119 109 109 100 81 70 65 99 85	VR1(390.32) 363.3926 (93%) 339.9978 (87%) 316.6029 (81%) 300.2266 (76%) 253.4369 (64%) 253.4369 (64%) 208.9867 (53%) 208.9867 (53%) 167.3914 (44%) 162.1971 (41%) 150.1128 (38%) 230.2051 (58%) 197.4523 (50%)	Available Mem VR2(14.00) - - - - - - - - - - - - -	ory (Gbits) VR3(8.00)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL (Gbits) 	LROC IMAGES AVALABLE 157 147 137 130 109 109 100 90 81 70 70 75 99 85 73	VR1 (390. 32) 363. 3926 (93%) 333. 9978 (87%) 316.6029 (81%) 300.2266 (76%) 274.4923 (70%) 253.4369 (64%) 203.9867 (53%) 187.9314 (48%) 162.1971 (41%) 162.1971 (41%) 162.1971 (53%) 163.7785 (43%)	Available Mem VR2(14.00) 	Ory (Gbits) VR3(8.00)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL (Sbits) 	LROC IMAGES AVALABLE 157 147 137 137 139 109 100 00 90 91 010 05 95 85 73 60	VR1(390.32) 363.3926 (93%) 339.9978 (87%) 316.6029 (81%) 300.2266 (76%) 274.4923 (70%) 223.3816 (59%) 208.9867 (53%) 187.9314 (48%) 162.1971 (41%) 162.1971 (41%) 162.1971 (41%) 163.9552 (35%) 163.9552 (35%)	Available Mem VR2(14.00) - - - - - - - - - - - - -	ory (Gbits) VR3(8.00)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL (Gbits) 	LROC IMAGES AVALABLE 157 147 130 119 109 109 109 109 109 109 10	VR1 (390. 32) 363. 3926 (93%) 333. 3978 (87%) 316. 6029 (81%) 300. 2266 (76%) 274. 4923 (70%) 253. 4369 (64%) 203. 9867 (53%) 162. 1971 (41%) 162. 1971 (41%) 162. 1971 (41%) 163. 3785 (43%) 138. 9652 (35%) 138. 9652 (35%) 138. 9652 (25%) 138. 9652 (25%) 148. 9652 (25%) 158. 968 (25%) 158.	Available Mem VR2(14.00) 	Ory (Gbits)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL (Gbits) 	LROC IMAGES AVALABLE 157 147 137 130 119 100 90 90 91 00 90 91 00 90 91 00 90 91 00 90 91 00 90 91 90 90 91 91 90 90 91 91 90 90 91 91 90 90 91 91 90 90 91 91 90 90 91 91 90 90 91 91 90 90 91 91 90 90 91 91 90 90 91 91 90 91 90 91 91 90 90 91 91 90 90 91 91 90 91 91 90 91 91 90 91 91 90 91 91 91 91 90 91 95 95 95 95 95 95 95 95 95 95	VR1(390.32) 363.3926 (934) 339.9978 (874) 316.6029 (814) 300.2266 (764) 274.4923 (704) 253.4369 (644) 202.9867 (534) 102.1928 (384) 102.1928 (384) 102.1128 (384) 1	Available Mem VR2(14.00) 	ory (Gbits) VR3(8.00)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL (Gbits) 	LROC IMAGES AVALABLE 157 147 130 119 109 109 109 61 70 65 99 85 73 60 49 34 26 27 27 27 27 27 27 27 27 27 27	VR1(390.32) 363.3926 (93%) 316.6029 (81%) 316.6029 (81%) 300.2266 (76%) 223.3816 (59%) 208.9867 (53%) 187.9314 (48%) 162.1971 (41%) 150.1129 (38%) 197.4523 (50%) 138.9652 (35%) 138.9652 (35%) 138.9652 (25%) 80.4782 (20%) 80.4782 (2	Available Mem VR2(14.00) - - - - - - - - - - - - -	Ory (Gbits)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL (Gbits)	LROC IMAGES AVALABLE 157 147 137 130 119 100 90 90 91 00 90 91 70 65 95 95 95 95 95 95 95 95 95 9	VR1 (390.32) 363.3926 (93%) 339.9978 (87%) 316.6029 (81%) 300.2266 (76%) 274.4923 (70%) 253.4369 (64%) 202.9867 (53%) 187.9314 (48%) 162.1971 (41%) 150.1128 (38%) 230.2051 (58%) 197.4523 (50%) 169.3795 (43%) 138.9652 (35%) 113.2309 (29%) 8.9672 (23%) 113.2309 (29%) 113.2309 (20%) 113.2309 (20%) 113.2309 (20%) 113.2309 (20%) 113.2309 (20%) 113.2309 (20%) 11	Available Mem VR2(14.00) 	Ory (Gbits)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL (Gbits)	LROC IMAGES AVALABLE 157 147 137 130 119 109 100 90 81 70 65 99 85 73 60 49 934 426 17 92 16 17 16 16 16 19 10 10 10 10 10 10 10 10 10 10	VR1(390.32) 363.3926 (93%) 339.9978 (87%) 316.6029 (81%) 300.2266 (76%) 274.4923 (70%) 232.3816 (59%) 232.3816 (59%) 232.3816 (55%) 187.9314 (48%) 162.1971 (41%) 150.1129 (38%) 150.1129 (38%) 138.9652 (35%) 138.9652 (35%) 138.9652 (29%) 80.4782 (20%) 61.7623 (15%) 40.7707 (10%) 212.9293 (54%) 390.0100 (10%)	Available Mem	Nory (Gbits)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL (Gbits) 	LROC IMAGES AVALABLE 157 147 137 130 109 109 109 109 109 109 109 10	VR1(390.32) 363.3926 (93%) 339.9978 (87%) 316.6029 (81%) 300.2266 (76%) 274.4923 (70%) 253.4369 (64%) 202.9867 (53%) 187.9314 (48%) 162.1971 (41%) 150.1128 (38%) 230.2051 (58%) 197.4523 (50%) 169.3785 (43%) 138.9652 (35%) 113.2309 (29%) 80.4782 (20%) 61.7623 (15%) 40.77070 (10%) 212.9293 (54%) 390.3200 (10%) 390.3200 (10%) 300.3200 (10%) 300	Available Mem VR2(14.00) 	Nory (Gbits)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL (Gbits)	LROC IMAGES AVALABLE 157 157 137 137 139 109 109 100 81 70 65 99 85 73 60 49 34 26 17 92 169 169 169 169 169 169 169 165 167 187 199 100 100 100 100 100 100 100	VR1(390.32) 363.3926 (93%) 339.9978 (87%) 316.6029 (81%) 300.2266 (76%) 274.4923 (70%) 253.4369 (64%) 232.3816 (59%) 208.9867 (53%) 187.9314 (48%) 162.1971 (41%) 150.1128 (38%) 150.1128 (38%) 163.2051 (58%) 113.30952 (35%) 1133.9652 (35%) 1133.9652 (35%) 1133.9652 (29%) 80.4782 (20%) 80.4782 (20%) 90.3700 (10%) 390.3200 (100%) 396.9252 (94%)	Available Mem VR2(14.00) - - - - - - - - - - - - -	Nory (Gbits)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL (Gbits)	LROC IMAGES AVALABLE 157 147 137 130 109 109 109 100 90 61 70 65 99 85 73 60 49 49 34 26 17 92 169 169 169 159	VR1(390.32) 363.3926 (934) 339.9978 (874) 316.6029 (814) 300.2266 (764) 274.4923 (704) 253.4369 (644) 202.3816 (594) 202.3816 (594) 202.3816 (594) 202.3816 (594) 127.4921 (414) 150.1128 (384) 230.2051 (584) 197.4523 (504) 138.9652 (354) 138.9652 (354) 138.9652 (354) 138.9652 (354) 138.9652 (354) 138.9652 (354) 138.9652 (354) 138.9652 (354) 138.9652 (354) 139.3200 (104) 300.3200 (1004) 390.3200 (1004) 366.9252 (944) 345.8698 (888)	Available Mem VR2(14.00) 	Nory (Gbits)
Average LROC Size of last Time of last	WAC Image Size: SSR1 Telemetry: SSR1 Telemetry:	363. 2009	3926 Gbit 077.19570	s 5	KBandDL (Gbits) 	LROC IMAGES AVALABLE 157 147 137 130 119 109 109 90 91 70 65 95 95 73 60 49 34 26 169 169 169 169 169 150 169 169 169 169 169 169 169 169	VR1(390.32) 363.3926 (93%) 339.9978 (87%) 316.6029 (81%) 300.2266 (76%) 274.4923 (70%) 253.4369 (64%) 202.9867 (53%) 202.9867 (53%) 162.1971 (41%) 162.1971 (41%) 162.1971 (41%) 169.3785 (43%) 138.9652 (35%) 113.2309 (25%) 113.2309 (25%) 30.3200 (100%) 390.3200 (100%) 396.3200 (26%) 345.8698 (88%) 327.1540 (83%)	Available Mem VR2(14.00) 	Nory (Gbits)

Figure B.4-21 Sample Data Recorder Model Report File